Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-28T21:00:52.256Z Has data issue: false hasContentIssue false

Structure and Properties of Single Crystal Al2O3 Implanted with Chromium and Zirconium

Published online by Cambridge University Press:  15 February 2011

C. J. Mchargue
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37830
H. Naramoto
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37830
B. R. Appleton
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37830
C. W. White
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37830
J. M. Williams
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37830
Get access

Abstract

Single crystals of Al2O3 were implanted with chromium and zirconium to fluences of 1 × 1016 to 1 × 1017 ions cm−2. Rutherford backscattering-channeling studies showed the surface layers to be damaged but crystalline with the implanted ions randomly distributed. The microhardness and indentation fracture toughness were higher for the random solutions than for conventionally formed solid solutions. Changes in structure and properties caused by annealing in air at temperatures up to 1800°C were studied.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Research sponsored by the Division of Materials Sciences, U.S. Department of Energy, under contract W–7405–eng–26 with the Union Carbide Corporation.

ǂ

On assignment from Physics Division, JAERI, Japan.

References

REFERENCES

1.Arnold, G. W., Krefft, G. B. and Norris, C. B., Appl. Phys. Lett. 25, 540 (1974).Google Scholar
2.Krefft, G. B., Beezhold, W. and EerNisse, E. P., IEEE Trans. Nucl. Sci., NS–22, 2247 (1975).Google Scholar
3.Evans, B. D., Hendricks, H. D., Bazzarre, F. D. and Bunch, J. M. in: Ion Implantation in Semiconductors—1976, Chernow, F. C., Borders, J. A. and Brice, D. K. eds. (Plenum Press, New York 1976) p. 2651.Google Scholar
4.Luera, T. F., Borders, J. A. and Arnold, G. W. in: Ion Implantation in Semiconductors–1976, Chernow, F., Borders, J. A. and Brice, D. K. eds. (Plenum Press, New York 1976) p. 285.Google Scholar
5.Naguib, H. M., Singleton, J. F., Grant, W. A. and Carter, G., J. Mater. Sci. 8, 1633 (1973).Google Scholar
6.Drigo, A. V., Russo, S. L., Mazzoldi, P., Goode, P. D. and Hartley, N.E.W., Radia. Eff. 33, 161 (1977).Google Scholar
7.Carnera, A., Drigo, A. V. and Mazzoldi, P., Radia. Eff. 49, 29 (1980).Google Scholar
8.Naguib, H. M. and Kelly, R., Radia. Eff. 25, 1 (1975).Google Scholar
9.Jech, C. and Kelly, R., J. Phys. Chem. Sol. 30, 465 (1969);Google Scholar
31, 41 (1970).Google Scholar
10.Matzke, H. and Whitton, J. L., Canad. J. Phys. 44, 995 (1966).Google Scholar
11.Rechtin, M. D., Radia. Eff. 42, 129 (1979).Google Scholar
12.Marion, R. H. in: Fracture Mechanics Applied to Brittle Materials Freiman, S. W. ed. (American Society for Testing and Materials, Philadelphia, PA 1979) p. 103.Google Scholar
13.Evans, A. G. in: Fracture Mechanics Applied to Brittle Materials Freiman, S. W. ed. (American Society for Testing and Materials, Philadelphia, PA 1979) p. 112.Google Scholar
14.Bradt, R. C., J. Am. Ceram. Soc. 50, 54 (1967).Google Scholar
15.Ghate, B. B., Smith, W. C., Kim, C. H., Hasselman, D.P.H. and Kane, G. E., Ceram. Bull. 54, 210 (1975).Google Scholar