Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T02:06:11.769Z Has data issue: false hasContentIssue false

Spin-dependent electron transport in ferromagnet/semiconductor Schottky barrier structures

Published online by Cambridge University Press:  14 March 2011

Atsufumi Hirohata
Affiliation:
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, ENGLAND
Yong-Bing Xu
Affiliation:
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, ENGLAND
Christian M. Guertler
Affiliation:
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, ENGLAND
J. Anthony
Affiliation:
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, ENGLAND
C. Bland
Affiliation:
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, ENGLAND
Stuart N. Holmes
Affiliation:
Cambridge Research Laboratory, Toshiba Research Europe Limited, 260 Cambridge Science Park, Milton Road, Cambridge CB4 0WE, ENGLAND
Get access

Abstract

Clear evidence for high efficiency spin-polarized electron transport across ferromagnet/semiconductor Schottky barrier interfaces was observed in Ni80Fe20/GaAs structures. Circularly polarized light was used to excite electrons with a spin polarization perpendicular to the film plane. At negative bias, an almost constant difference between the helicity-dependent photocurrent obtained for the magnetization parallel and perpendicular to the photon helicity was detected. An effective asymmetry, A, was also estimated from the helicity-dependent photocurrent difference, attributed to spin-polarized electron tunneling from GaAs to NiFe (spin filtering). A decreases with increasing photon energy, which is consistent with the energy-dependence of the asymmetry of photoexcited electrons in GaAs. Weak spin injection from NiFe to GaAs was seen at a bias corresponding to the Schottky barrier height, which is likely to occur via a ballistic process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Datta, S. and Das, B., Appl. Phys. Lett., 56, 665 (1990).10.1063/1.102730Google Scholar
2. Hammar, P. R., Bennet, B. R., Yang, M. J. and Johnson, M., Phys. Rev. Lett., 83, 203 (1999).10.1103/PhysRevLett.83.203Google Scholar
3. Upadhyay, S. K., Louie, R. N. and Buhrman, R. A., Appl. Phys. Lett., 74, 3881 (1999).10.1063/1.124211Google Scholar
4. Fiederling, R., Keim, M., Reunscher, G., Ossau, W., Schmidt, G., Waag, A. and Molenkamp, L. W., Nature, 402, 787 (1999); Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno and D. D. Awschalom, Nature, 402, 790 (1999).10.1038/45502Google Scholar
5. Prins, M. W. J., Kempen, H. van, Leuken, H. van, Groot, R. A. de, Roy, W. van and Boeck, J. de, J. Phys.: Cond. Matt., 7, 9447 (1995).Google Scholar
6. Hirohata, A., Xu, Y. B., Guertler, C. M. and Bland, J. A. C., J. Appl. Phys., 85, 5804 (1999); ibid. 87, 4670 (2000).10.1063/1.369925Google Scholar
7. Bland, J. A. C., Hirohata, A., Xu, Y. B., Guertler, C. M. and Holmes, S. N, IEEE Trans.Magn. (in press).Google Scholar
8. Sze, S. M., Physics of Semiconductor Devices (Wiley, 1981) pp. 245311.Google Scholar
9. Pierce, D. T. and Meier, F., Phys. Rev., B 13, 5484 (1976).10.1103/PhysRevB.13.5484Google Scholar
10. Magaud, L. and Cyrot-Lackmann, F., Encyclopedia of Applied Physics, Vol. 16 New (VCH, 1996) pp. 573591.Google Scholar