Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-20T08:31:13.579Z Has data issue: false hasContentIssue false

Novel Hybrid Composites Based on Carbon Foams

Published online by Cambridge University Press:  25 February 2011

Joseph W. Hager
Affiliation:
Wright Laboratory, WL/MLBC, Wright-Patterson AFB, OH 45433-6533
Max L. Lake
Affiliation:
Applied Sciences, Inc., P.O. Box 579, Cedarville, OH 45314
Get access

Abstract

The extraordinary mechanical properties of commercial carbon fiber are due to the unique graphitic morphology of the spun filaments. Contemporary advanced structural composites exploit these properties by creating a disconnected network of graphitic filaments held together by an appropriate matrix. Carbon foam derived from a blown mesophase pitch precursor can be considered to be an interconnected network of graphitic ligaments. As such interconnected networks, they represent a potential alternative reinforcing phase for structural composite materials. Based on this notion, consideration is given to novel forms of graphitic carbon and the processing routes to create hybrid composites, such as net shape fabrication and fiber placement processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dresselhaus, M. S., Dresselhaus, G., Sugihara, K., Spain, I. L., and Goldberg, H. A., Graphite Fibers and Filaments. (Springer Verlag, New York, 1988).CrossRefGoogle Scholar
2. Tibbetts, G. G., Endo, M., and Beetz, C. P. Jr., SAMPE J., Sep/Oct, (1986).Google Scholar
3. Koyama, T. and Endo, M., Japan J. Appl. Phys. 13, 1175, (1974).Google Scholar
4. Heremans, J. and Beetz, C. P. Jr, Phys Rev B 32, 1981, (1985).Google Scholar
5. Bunsell, A. R., Sixth International Conference on Composite Materials. Vol. 5, Matthews, F. L. et al. , Eds., Elsevier Appl. Sci., New York, (1986).Google Scholar
6. Diefendorf, R. J., in Carbon Fibres and Their Composites, Fitzer, E., Ed., Springer-Verlag, Berlin, (1985).Google Scholar
7. Renzo, D. J. De, Ed., Advanced Composite Materials Products and Manufacturers, Noyes Data Corporation, Park Ridge, N. J., (1988).Google Scholar
8. Metals Handbook. 1.2, (American Society for Metals, Metals Park, 1978).Google Scholar
9. Mehta, R., Hager, J. W., Anderson, D.P. and Gunnison, K. E., submitted, (MRS Symposium Proceedings 270, Pittsburgh, 1992) (in press).Google Scholar
10. Gibson, L. I. and Ashby, M. F., Cellular Solids:Structures & Properties, (Pergamon Press, New York, 1988).Google Scholar
11. Gibson, L. J., Mat. Sci. and Eng A110, 1,(1989).Google Scholar
12. Knippenberg, W. F. and Lersmacher, B., Phillips tech. Rev. 3M (4), (1976).Google Scholar
13. Bonzom, A., Crepaux, A. P. Moutard, A. E. J., U. S. Patent 4,276,246, (1981)Google Scholar
14. Aubert, J. H., (MRS Symposium Proceedings 207, 117, 1990) pp. 117127.Google Scholar
15. Cowlard, F. C. and Lewis, J. C., J. of Mat. Sci. 2, 507512 (1967).Google Scholar
16. Noda, T., Inagaki, M. and Yamada, S., J. of Non-Crystalline Solids 1, 285302, (1969).Google Scholar
17. Wang, J., Electrochimica Acta 26 (12),1721, (1981).Google Scholar