Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-27T12:22:14.932Z Has data issue: false hasContentIssue false

Creating catalytically active nanoparticles via block copolymer templates for carbon nanotube and silicon nanowire growth

Published online by Cambridge University Press:  01 February 2011

Jennifer Lu
Affiliation:
jennifer_lu@agilent.com, Agilent Technologies, MTL, 3500 Deer Creek Road, Palo Alto, 94304, United States
Danielle Chamberlin
Affiliation:
Danielle_Chamberlin@agilent.com, Agilent Technologies, 3500 Deer Creek Road, Palo Alto, 94304, United States
Get access

Abstract

Using solution micelles formed by a block copolymer template, a variety of highly ordered catalytically active transition metal nanoparticles, ranging from single metallic nanoparticles of Fe, Co, Ni and Au to bimetallic nanoparticles such as Ni/Fe with uniform size and periodicity, have been created. These nanoparticles are excellent catalyst systems for the synthesis of carbon nanotubes and silicon nanowires. High quality, small diameter carbon nanotubes and silicon nanowires with narrow size distribution have been successfully produced. Since this block copolymer is fully compatible with conventional top-down photolithography, spatially selective growth of carbon nanotubes and silicon nanowires on a surface or carbon nanotubes suspended across trenches have been achieved using standard semiconductor processing techniques. The ability of the block copolymer template to generate catalyst with adjustable size and composition on a variety of surfaces not only enhance the manufacturability of these 1D nanobuilding blocks but also facilitates studying the growth mechanism.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Appenzeller, J., Knoch, J., Martel, R., Derycke, V., Wind, S. J. and Avouris, P., IEEE Transactions on Nanotechnology, 1, 184 (2002).Google Scholar
2. McEuen, P. L., Fuhrer, M. S., Park, H. K., IEEE Transactions on Nanotechnology, 1, 78 (2002).Google Scholar
3. Chen, R. J., Bangsaruntip, S., Drouvalakis, K. A., N. Kam, W. S., Shim, M., Li, Y. M., Kim, W., Utz, P. J. and Dai, H. J., “Proceedings of the National Academy of Sciences of the United States of America”, 100, 4984 (2003).Google Scholar
4. Persson, A. I., Larsson, M. W., Stenström, S., Ohlsson, B. J., Samuelson, L. and Wallenberg, L. R., Nat. Mater. 3, 677 (2004).Google Scholar
5. Daiguji, H., Yang, P. and Majumdar, A., Nano. Lett. 4, 137 (2004).Google Scholar
6. Li, D., Wu, Y., Kim, P., Shi, L., Yang, P. and Majumdar, A., Applied Physics Letters, 83(14), 2934(2003).Google Scholar
7. Dresselhaus, M. S., Dresselhaus, G. and Avouris, P., Carbon Nanotubes: Synthesis, Structure, Properties, and Applications; Springer-Verlag: Berlin, 256, 2001 Google Scholar
8. Park, M., Harrison, C., Chaikin, P., Register, R. and Adamson, R., Science 276, 1401 (1995).Google Scholar
9. Lopes, W. and Jaeger, M., Nature 414, 735 (2003).Google Scholar
10. Thurn-Alberchet, T., Schotter, J., Kästle, G.A., Emley, N., Shibauchi, T., Krusin-Elbaum, L., Gaurini, K., Black, C.T., Tuominen, M.T., and Russell, T.P., Science 290, 2126 (2000).Google Scholar
11. Hawker, C.J. and Russell, T. P., MRS bulletin, 30(12), 2005 Google Scholar
12. Sharma, S., Kamins, T.I. and Williams, R.S., Appl. Phys. A 80, 1225(2005)Google Scholar