Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-23T16:58:44.121Z Has data issue: false hasContentIssue false

Celebrating 40 Years of Energy Dispersive X-Ray Spectrometry in Electron Probe Microanalysis: A Historic and Nostalgic Look Back into the Beginnings

Published online by Cambridge University Press:  06 October 2009

Klaus Keil*
Affiliation:
Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
Ray Fitzgerald
Affiliation:
8422 La Jolla Shores Dr., La Jolla, CA 92037, USA
Kurt F.J. Heinrich
Affiliation:
804 Blossom Dr., Rockville, MD 20850, USA
*
Corresponding author. E-mail: keil@hawaii.edu
Get access

Abstract

On February 2, 1968, R. Fitzgerald, K. Keil, and K.F.J. Heinrich published a seminal paper in Science (159, 528–530) in which they described a solid-state Si(Li) energy dispersive spectrometer (EDS) for electron probe microanalysis (EPMA) with, initially, a resolution of 600 eV. This resolution was much improved over previous attempts to use either gas-filled proportional counters or solid-state devices for EDS to detect X-rays and was sufficient, for the first time, to make EDS a practically useful technique. It ushered in a new era not only in EPMA, but also in scanning electron microscopy, analytical transmission electron microscopy, X-ray fluorescence analysis, and X-ray diffraction. EDS offers many advantages over wavelength-dispersive crystal spectrometers, e.g., it has no moving parts, covers the entire X-ray energy range of interest to EPMA, there is no defocusing over relatively large distances across the sample, and, of particular interest to those who analyze complex minerals consisting of many elements, all X-ray lines are detected quickly and simultaneously.

Type
Special Section: 40 Years of EDS
Copyright
Copyright © Microscopy Society of America 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arndt, U.W., Coates, W.A. & Crathorne, A.R. (1954). A gas-flow X-ray diffraction counter. Proc Phys Soc B 67, 357359.CrossRefGoogle Scholar
Birks, L.S. & Batt, A.P. (1963). Use of a multichannel analyzer for electron probe microanalysis. Anal Chem 35, 778782.CrossRefGoogle Scholar
Bowman, H.R., Hyde, E.K., Thompson, S.G. & Jared, R.C. (1966). Application of high-resolution semiconductor detectors in X-ray emission spectrography. Science 151, 562568.CrossRefGoogle ScholarPubMed
Clark, B.C. III, Baird, A.K., Rose, H.J. Jr., Toulmin, P. III, Christian, R.P., Kelliher, W.C., Castro, A.G., Rowe, C.D., Keil, K. & Huss, G.R. (1977). The Viking X-ray experiment: Analytical methods and early results. J Geophys Res 82, 45774594.CrossRefGoogle Scholar
Dolby, R.M. (1959). Some methods for analyzing unresolved proportional counter curves of X-ray line spectra. Proc Phys Soc 73, 8194.CrossRefGoogle Scholar
Duncumb, P. (1963). X-ray microanalysis of elements in the range Z-4-92, combined with electron microscopy and electron diffraction. In X-ray Optics and X-ray Microanalysis, Pattee, H., Cosslett, V. & Engstrom, A. (Eds.), pp. 431439. New York: Academic Press.CrossRefGoogle Scholar
Fitzgerald, R. & Gantzel, P. (1971). X-ray energy spectrometry in the 0.1–10 A range. Proceedings of the Symposium on Energy Dispersion X-Ray Analysis: X-Ray and Electron Probe Analysis, Toronto, Ontario, Canada, June 21, 1970, ASTM-STP-485, pp. 335. Philadelphia, PA: American Society for Testing and Materials.Google Scholar
Fitzgerald, R., Keil, K. & Heinrich, K.F.J. (1968). Solid-state energy-dispersive spectrometer for electron-microprobe X-ray analysis. Science 159, 528530.CrossRefGoogle Scholar
Gomes, C.B. & Keil, K. (1980). Brazilian Stone Meteorites. Albuquerque, NM: University of New Mexico Press.Google Scholar
Heide, F. (1934). Kleine Meteoritenkunde. Berlin: Springer.CrossRefGoogle Scholar
Heinrich, K.F.J. (1960). Pulse height selection in X-ray fluorescence. In Advances in X-Ray Analysis, Vol. 3, pp. 370381. New York: Plenum Press.Google Scholar
Heinrich, K.F.J. (1962). X-ray probe with collimation of the secondary beam. In Advances in X-Ray Analysis, Vol. 5, pp. 516536. New York: Plenum Press.CrossRefGoogle Scholar
Heinrich, K.F.J. (1981). Electron Beam X-Ray Microanalysis. New York: Van Nostrand Reinhold.Google Scholar
Krinov, E.L. (1955). Osnovy Meteoritiki. English Transl. (1960). Principles of Meteoritics. New York: Pergamon Press.Google Scholar
Mason, B. (1962). Meteorites. New York: John Wiley and Sons.Google Scholar
Mason, B. (1967). Extraterrestrial mineralogy. Amer Mineral 52, 307325.Google Scholar
Mason, B. (1972). The mineralogy of meteorites. Meteoritics 7, 309326.CrossRefGoogle Scholar
Olsen, E. (1981). Meteoritic minerals. In The Encyclopedia of Minerals, Frye, K. (Ed.), pp. 240246. Stroudsburg, PA: Hutchinson Ross Publishing Company.Google Scholar
Rubin, A.E. (1997a). Mineralogy of meteorite groups. Meteorit Planet Sci 32, 231247.CrossRefGoogle Scholar
Rubin, A.E. (1997b). Mineralogy of meteorite groups: An update. Meteorit Planet Sci 32, 733734.CrossRefGoogle Scholar
Toulmin, P. III, Baird, A.K., Clark, B.C., Keil, K., Rose, H.J. Jr., Christian, R.P., Evans, P.H. & Kelliher, W.C. (1977). Geochemical and mineralogical interpretation of the Viking inorganic chemical results. J Geophys Res 82, 46254634.CrossRefGoogle Scholar
Tschermak, G. (1885). Die mikroskopische Beschaffenheit der Meteoriten. Facsimile reprint, with English translation (1964). Smithsonian Contrib Astrophys 4, 137239.Google Scholar