Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-27T17:27:09.382Z Has data issue: false hasContentIssue false

Characterization of Vacancy-Type Defects in Ion Implanted and Annealed SiC by Positron Annihilation Spectroscopy

Published online by Cambridge University Press:  10 February 2011

W. Anwand
Affiliation:
Institut fur Ionenstrahlphysik und Materialforschung, Forschungszentrum Rossendorf, Postfach 510119, 01314 Dresden, Germany, brauer@fz-rossendorf.de
G. Brauer
Affiliation:
Institut fur Ionenstrahlphysik und Materialforschung, Forschungszentrum Rossendorf, Postfach 510119, 01314 Dresden, Germany, brauer@fz-rossendorf.de
P. G. Coleman
Affiliation:
School of Physics, University of East Anglia, Norwich NR4 7TJ, UK
W. Skorupa
Affiliation:
Institut fur Ionenstrahlphysik und Materialforschung, Forschungszentrum Rossendorf, Postfach 510119, 01314 Dresden, Germany, brauer@fz-rossendorf.de
Get access

Abstract

New examples of characterization of vacancy-type defects in ion implanted and annealed SiC by the established technique of slow positron implantation spectroscopy are presented. In particular, the estimation of the depths of damaged regions and their change (a) after post-irradiation annealing, or (b) due to variation of substrate temperature during implantation, is addressed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schultz, P.J. and Lynn, K.G., Rev. Mod. Phys. 60, 701 (1988)Google Scholar
2. Heera, V. and Skorupa, W. in Materials modification and synthesis by ion beam processes, edited by Alexander, Dale E., Cheung, NathanW., Park, Byungwoo., and Skorupa, W. (Mater. Res. Soc. Proc. 438, Pittsburgh, PA, 1997) pp. 241252 Google Scholar
3. Cree Research Inc., Durham, NC (USA)Google Scholar
4. Chilton, N.B. and Coleman, P.G., Meas. Sci. Technol. 6, 53 (1995)Google Scholar
5. van Veen, A., Schut, H., de Vries, J., Hakvoort, R.A. and Ijpma, M. R., in Positron Beams for Solids and Surfaces, edited by Schultz, P.J., Massoumi, G.R. and Simpson, P.J., AIP Conf Proc. No. 218 (American Inst. of Physics, New York, 1990), p. 171 Google Scholar
6. Wirth, H., Anwand, W., Brauer, G., Coleman, P.G., Voelskow, M., Panknin, D. and W. Skorupa, Proc. of the International Conference on Silicon Carbide, III-nitrides and Related Materials, Stockholm, 1997, (in press)Google Scholar
7. Brauer, G., Anwand, W., Coleman, P.G., Knights, A.P., Plazaola, F., Pacaud, Y., Skorupa, W., Störmer, J. and Willutzki, P., Phys. Rev. B 54, 3084 (1996)Google Scholar
8. Brauer, G., Anwand, W., Nicht, E.-M., Kuriplach, J., Sob, M., Wagner, N., Coleman, P.G., Puska, M.J. and Korhonen, T., Phys. Rev. B 54, 2512 (1996)Google Scholar
9. Brauer, G., Anwand, W., Coleman, P.G., Störmer, J., Plazaola, F., Campillo, J.M., Pacaud, Y. and Skorupa, W., J. Phys.: Condens. Matter (in press)Google Scholar
10. Choyke, W.J., The Physics and Chemistry of Carbides. Nitrides and Borides, Vol.185 of NATO Advanced Study Institute (Kluwer, Dordrecht, 1990), p.563 Google Scholar