Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-18T23:28:08.005Z Has data issue: false hasContentIssue false

Heat shock and stress response of Taenia solium and T. crassiceps (Cestoda)

Published online by Cambridge University Press:  07 August 2001

L. VARGAS-PARADA
Affiliation:
Department of Immunology, Instituto de Investigaciones Biomédicas, A.P. 70228, Cd. Universitaria 04510 México D.F., México
C. F. SOLÍS
Affiliation:
Department of Immunology, Instituto de Investigaciones Biomédicas, A.P. 70228, Cd. Universitaria 04510 México D.F., México
J. P. LACLETTE
Affiliation:
Department of Immunology, Instituto de Investigaciones Biomédicas, A.P. 70228, Cd. Universitaria 04510 México D.F., México

Abstract

Heat shock and stress responses are documented for the first time in larval stages of the cestodes Taenia solium and Taenia crassiceps. Radioactive metabolic labelling after in vitro incubation of cysts at 43 °C, revealed the induction of heat shock proteins. In T. crassiceps, the major heat shock proteins were 80, 70 and 60 kDa. After prolonged incubation, a set of low molecular weight heat shock proteins (27, 31, 33 and 38 kDa), were also induced. In vitro incubation of cysts at 4 °C, induced the synthesis of stress proteins ranging from 31 to 80 kDa, indicating the parasite is also able to respond to cold shock. T. solium cysts exposure to temperature stress also resulted in an increased synthesis of 2 major heat shock proteins of 80 and 70 kDa. Western blots using the excretory–secretory products of T. solium showed that 2 heat shock proteins were recognized by antibodies in the sera of cysticercotic patients: one of 66 kDa and another migrating close to the run front. The T. solium 66 kDa protein was also recognized by specific antibodies directed to a 60 kDa bacterial heat shock protein, suggesting that it belongs to this family of proteins.

Type
Research Article
Copyright
2001 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BENITEZ, L., HARRISON, L. J., PARKHOUSE, R. M. & GARATE, T. (1998). Sequence and preliminary characterisation of a Taenia saginata oncosphere gene homologue of the small heat-shock protein family. Parasitology Research 84, 423425.CrossRefGoogle Scholar
BOOG, C. J. P., DE GRAEFF-MEEDER, E. R., LUCASSEN, M. A., VAN DER ZEE, R., VOORHOST-OGINK, M. M., VAN KOOTEN, P. J. S., GEUZE, H. J. & VAN EDEN, W. (1992). Two monoclonal antibodies generated against human hsp60 show reactivity with synovial membranes of patients with juvenile chronic arthritis. Journal of Experimental Medicine 175, 18051810.CrossRefGoogle Scholar
BURDON, R. H. (1986). Heat shock and the heat shock proteins. Biochemistry Journal 240, 313324.CrossRefGoogle Scholar
DE MAIO, A. (1999). Heat shock proteins: facts, thoughts, and dreams. Shock 11, 112.CrossRefGoogle Scholar
ESTES, D. M. & TEALE, J. M. (1991). Biochemical and functional analysis of extracellular stress proteins of Mesocestoides corti. Journal of Immunology 147, 39263934.Google Scholar
FEDER, M. E. & HOFMANN, G. E. (1999). Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annual Reviews in Physiology 61, 243282.CrossRefGoogle Scholar
GRAGEROV, A., NUDLER, E., KOMMISAROVA, N., GAITANARIS, G. A., GOTTESMAN, M. E. & NIKIFOROV, V. (1992). Cooperation of GroEL/GroES and DnaK/DnaJ heatshock proteins in preventing protein misfolding in Escherichia coli. Proceedings of the National Academy of Sciences, USA 89, 1034110344.CrossRefGoogle Scholar
HARTL, F. U., MARTIN, J. & NEUPERT, W. (1992). Protein folding in the cell: the role of molecular chaperones Hsp70 and Hsp60. Annual Review of Biophysics and Biomolecular Structure 21, 293322.CrossRefGoogle Scholar
HEDSTROM, R., CULPEPPER, J., SCHINSKI, V., AGABIAN, N. & NEWPORT, G. (1988). Schistosome heat-shock proteins are immunologically distinct host-like antigens. Molecular and Biochemical Parasitology 29, 275282.CrossRefGoogle Scholar
HEMMINGSEN, S. M., WOOLFORD, C., VAN, D. V. S. M., TILLY, K., DENNIS, D. T., GEORGOPOULOS, C. P., HENDRIX, R. W. & ELLIS, R. J. (1988). Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature, London 333, 330334.CrossRefGoogle Scholar
JOHNSON, K. K., WELLS, K., BOCK, J. V., NENE, V., TAYLOR, D. W. & CORDINGLEY, J. S. (1989). The 86-kilodalton antigen from Schistosoma mansoni is a heat-shock protein homologous to yeast HSP-90. Molecular and Biochemical Parasitology 33, 1928.CrossRefGoogle Scholar
KO, R. C. & FAN, L. (1996). Heat shock response of Trichinella spiralis and T. pseudospiralis. Parasitology 112, 8995.CrossRefGoogle Scholar
KO, R. C. & NG, T. F. (1998). Evaluation of excretory/secretory products of larval Taenia solium as diagnostic antigens for porcine and human cysticercosis. Journal of Helminthology 72, 147152.CrossRefGoogle Scholar
LAEMMLI, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680685.CrossRefGoogle Scholar
LARRALDE, C., SOTELO, J., MONTOYA, R. M., PALENCIA, G., PADILLA, A., GOVEZENSKY, T., DIAZ, M. L. & SCIUTTO, E. (1990). Immunodiagnosis of human cysticercosis in cerebrospinal fluid. Antigens from murine Taenia crassiceps cysticerci effectively substitute those from porcine Taenia solium. Archives of Pathological Laboratory Medicine 114, 926928.Google Scholar
LASKEY, R. A. & MILLS, A. D. (1975). Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. European Journal of Biochemistry 56, 335341.CrossRefGoogle Scholar
LINDQUIST, S. (1986). The heat-shock response. Annual Reviews of Biochemistry 55, 11511191.CrossRefGoogle Scholar
MARESCA, B. & CARRATÙ, L. (1992). The biology of the heat shock response in parasites. Parasitology Today 8, 260266.CrossRefGoogle Scholar
MARTINEZ, J., PEREZ-SERRANO, J., BODEGA, G., CASADO, N. & RODRIGUEZ-CAABEIRO, F. (1999). Heat shock proteins HSP70 and HSP60 in Echinococcus granulosus protoscolices. Folia Parasitologia (Praha) 46, 7678.Google Scholar
MORIMOTO, R. I. (1990). The stress response, function of the proteins, and perspectives. In Stress Proteins in Biology and Medicine (ed. MORIMOTO, R. I. TISSIÈRES, A. & GEORGOPOULOS, C.), pp. 136. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
MORIMOTO, R. I., KLINE, M. P., BIMSTON, D. N. & COTTO, J. J. (1997). The heat shock response: regulation and function of heat-shock proteins and molecular chaperones. Essays in Biochemistry 32, 1729.Google Scholar
MUHLSCHLEGEL, F., FRISCG, P., CASTRO, A., APFEL, H., MULLER, A. & FROSCH, M. (1995). Molecular cloning and characterization of an Echinococcus multilocularis and Echinococcus granulosus stress protein homologous to the mammalian 78 kD glucose regulated protein. Molecular and Biochemical Parasitology 74, 245250.CrossRefGoogle Scholar
NEWPORT, G., CULPEPPER, J. & AGABIAN, N. (1988). Parasite heat-shock proteins. Parasitology Today 4, 306312.CrossRefGoogle Scholar
POLLA, B. S. (1991). Heat shock proteins in host–parasite interactions. Immunology Today 12, A3841.CrossRefGoogle Scholar
ROTHSTEIN, N. M., HIGASHI, G., YATES, J. & RAJAN, T. V. (1989). Onchocerca volvulus heat shock protein 70 is a major immunogen in amicrofilaremic individuals from a filariasis-endemic area. Molecular and Biochemical Parasitology 33, 229236.CrossRefGoogle Scholar
SCIUTTO, E., FRAGOSO, G., TRUEBA, L., LEMUS, D., MONTOYA, R. M., DIAZ, M. L., GOVEZENSKY, T., LOMELI, C., TAPIA, G. & LARRALDE, C. (1990). Cysticercosis vaccine: cross protecting immunity with Taenia solium antigens against experimental murine Taenia crassiceps cysticercosis. Parasite Immunology 12, 687689.CrossRefGoogle Scholar
SELKIRK, M. E., DENHAM, D. A., PARTONO, F. & MAIZELS, R. (1989). Heat shock cognate 70 is a prominent immunogen in brugian filariasis. Journal of Immunology 143, 299308.Google Scholar
THIERINGER, H. A., JONES, P. G. & INOUYE, M. (1998). Cold shock and adaptation. Bioessays 20, 4957.3.0.CO;2-N>CrossRefGoogle Scholar
TIELENS, A. G. M., VAN DEN HEUVEL, J. M. & VAN EDEN, W. (1993). Schistosoma mansoni: An hsp60 homologue is constitutively expressed in cercariae, adults, and sporocysts. Experimental Parasitology 77, 495497.CrossRefGoogle Scholar
TOWBIN, H., STAEHELIN, T. & GORDON, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets. Procedure and some applications. Proceedings of the National academy of Sciences, USA 76, 43504354.CrossRefGoogle Scholar
TSANG, V., BRAND, J. & BOYER, A. (1989). An enzyme-linked immunoelectrotransfer blot and glycoprotein antigens for diagnosing human cysticercosis (Taenia solium). Journal of Infectious Diseases 159, 5059.CrossRefGoogle Scholar
WELCH, W. J., KANG, H. S., BECKMAN, R. P. & MIZZEN, L. A. (1991). Response of mammalian cells to metabolic stress; changes in cell physiology and structure/function of stress proteins. In Heat Shock Proteins and Immune Response (ed. KAUFMANN, S. H. E.), pp. 3155. Springer-Verlag, Berlin–Heidelberg.CrossRef
ZEILSTRA-RYALLS, J., FAYET, O. & GEORGOPOULOS, C. (1991). The universally conserved GroE (Hsp60) chaperonins. Annual Review of Microbiology 45, 301325.CrossRefGoogle Scholar