Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T22:46:53.362Z Has data issue: false hasContentIssue false

Taking Advantage of Supramolecular Structure in Melt and Solution Electrospinning

Published online by Cambridge University Press:  01 February 2011

Matthew T. Hunley
Affiliation:
telong@vt.edu, Virginia Tech, Chemistry, 2110 Hahn Hall (0344), Blacksburg, WA, 24061, United States, 540-231-2480
Matthew G. McKee
Affiliation:
mmckee@vt.edu, Procter and Gamble, Cincinnati, OH, 45202, United States
Pankaj Gupta
Affiliation:
pgupta@vt.edu, Virginia Tech, Department of Chemical Engineering, Blacksburg, VA, 24061, United States
Garth L. Wilkes
Affiliation:
gwilkes@vt.edu, Virginia Tech, Department of Chemical Engineering, Blacksburg, VA, 24061, United States
Timothy E. Long
Affiliation:
telong@vt.edu, Virginia Tech, Chemistry, 2110 Hahn Hall (0344), Blacksburg, WA, 24061, United States
Get access

Abstract

Electrospinning, a polymer processing technique to create nanofibrous membranes, has been used to fabricate fibrous membranes from solution and melt phases showing supramolecular order. Wormlike micellar phases of low molar mass amphiphiles, including the phospholipid mixture asolectin, were electrospun under normal conditions to form micron-sized fibers. From the melt, well defined phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine was electrospun into a similar fibrous membrane. Additionally, thermoreversible physical crosslinks were used to prepare fibers from low molecular weight, star-shaped poly(D,L-lactide) under melt electrospinning conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Doshi, Jayesh and Reneker, Darrell H., Journal of Electrostatics 35 (2&3), 151 (1995); H. Fong, I. Chun, and D. H. Reneker, Polymer 40 (16), 4585 (1999).Google Scholar
2 Reneker, Darrell H.and Chun, Iksoo, Nanotechnology 7 (3), 216 (1996).Google Scholar
3 McKee, Matthew G., Wilkes, Garth L., Colby, Ralph H. et al., Macromolecules 37 (5), 1760 (2004).Google Scholar
4 Shenoy, Suresh L., Bates, W. Douglas, and Wnek, Gary, Polymer 46 (21), 8990 (2005).Google Scholar
5 Yu, Jian H., Fridrikh, Sergey V., and Rutledge, Gregory C., Polymer 47 (13), 4789 (2006).Google Scholar
6 McKee, Matthew G., Layman, John M., Cashion, Matthew P. et al., Science 311 (5759), 353 (2006).Google Scholar
7 Shenoy, Suresh L., Bates, W. Douglas, Frisch, Harry L. et al., Polymer 46 (10), 3372 (2005).Google Scholar
8 Yarin, A. L., Koombhongse, S., and Reneker, D. H., Journal of Applied Physics 89 (5), 3018 (2001).Google Scholar
9 Jiang, Hongliang, Hu, Yingqian, Zhao, Pengchenget al., Journal of Biomedical Materials Research, Part B: Applied Biomaterials 79B (1), 50 (2006); Xiuling Xu, Xuesi Chen, Xiaoyi Xu et al., Journal of Controlled Release 114 (3), 307 (2006).Google Scholar
10 McCann, Jesse T., Marquez, Manuel, and Xia, Younan, Nano Letters, ACS ASAP.Google Scholar
11 Nikkola, L., Seppala, J., Harlin, A. et al., Journal of Nanoscience and Nanotechnology 6 (9/10), 3290 (2006); A. Vaseashta, A. Erdem, and I. Stamatin, Materials Research Society Symposium Proceedings 920 (Smart Nanotextiles), 143 (2006).Google Scholar
12 Chase, G. G. and Reneker, D. H., Fluid/Particle Separation Journal 16 (2), 105 (2004); Chaobo Huang, Shuiliang Chen, Darrell H. Reneker et al., Advanced Materials (Weinheim, Germany) 18 (5), 668 (2006).Google Scholar
13 Qin, Xiao-Hong and Wang, Shan-Yuan, Journal of Applied Polymer Science 102 (2), 1285 (2006).Google Scholar
14 Bashur, Chris A., Dahlgren, Linda A., and Goldstein, Aaron S., Biomaterials 27 (33), 5681 (2006); T. B. Bini, Shujun Gao, Shu Wang et al., Journal of Materials Science 41 (19), 6453 (2006); E. D. Boland, K. J. Pawlowski, C. P. Barnes et al., ACS Symposium Series 918 (Polymeric Nanofibers), 188 (2006); Eugene D. Boland, Todd A. Telemeco, David G. Simpson et al., Journal of Biomedical Materials Research, Part B: Applied Biomaterials 71B (1), 144 (2004); Cheryl L. Casper, Nori Yamaguchi, Kristi L. Kiick et al., Biomacromolecules 6 (4), 1998 (2005); Cheryl L. Casper, Weidong Yang, Mary C. Farach-Carson et al., ACS Symposium Series 918 (Polymeric Nanofibers), 205 (2006); Wei He, Thomas Yong, Zu Wei Ma et al., Tissue Engineering 12 (9), 2457 (2006); Shinji Sakai, Yusuke Yamada, Tetsu Yamaguchi et al., Biotechnology Journal 1 (9), 958 (2006); Wee-Eong Teo, Wei He, and Seeram Ramakrishna, Biotechnology Journal 1 (9), 918 (2006); Rajesh Vasita and Dhirendra S. Katti, International Journal of Nanomedicine 1 (1), 15 (2006).Google Scholar
15 McKee, Matthew G., Hunley, Matthew T., Layman, John M.et al., Macromolecules 39 (2), 575 (2006).Google Scholar
16 McKee, Matthew G., Elkins, Casey L., and Long, Timothy E., Polymer 45 (26), 8705 (2004).Google Scholar
17 Sijbesma, Rint P., Beijer, Felix H., Brunsveld, Luc, at al., Science 278 (5343), 1601 (1997).Google Scholar
18 Dalton, Paul D., Calvet, Julia Lleixa, Mourran, Ahmedet al., Biotechnology Journal 1 (9), 998 (2006).Google Scholar