Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-29T05:06:11.977Z Has data issue: false hasContentIssue false

Electronic transport properties of atomic scale graphene/metal side contact

Published online by Cambridge University Press:  17 July 2013

Bo Ma*
Affiliation:
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People’s Republic of China
Yanwei Wen*
Affiliation:
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People’s Republic of China
Xiao Liu
Affiliation:
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People’s Republic of China
Bin Shan*
Affiliation:
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People’s Republic of China Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080, U.S.A.
*
Get access

Abstract

The transport properties of the atomic scale side contact between different metals (Au, Ag, Pt, Cu, Ni, Pd) and graphene with open zigzag ends have been studied from first-principles electron transport calculations. According to the contact configurations, we find the weakly interacting metals (Au, Ag, Pt and Cu) can form chemical bonds at the open graphene’s atomic edges, while the strongly interacting ones form chemical bonds in the whole contact region. Comparing with the case of end contact which could effectively decrease the contact resistance, the atomic scale side contact shows better transport properties than the end contact. And the graphene/metal side contact with hydrogen terminated graphene edge show obviously large resistance than the ones with open graphene edge, which signifies the importance of the termination of graphene edge in graphene/metal contact.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

Giovannetti, G., Khomyakov, P. A., Brocks, G., Karpan, V.M., van den Brink, J., and Kelly, P.J., Phys. Rev. Lett. 101, 26803 (2008).CrossRefGoogle Scholar
Gong, C., Lee, G., Shan, B., Vogel, E. M., Wallace, R.M., and Cho, K.J., J. Appl. Phys. 108, 123711 (2010).CrossRefGoogle Scholar
Ran, Q., Gao, M., Guan, X., Wang, Y., and Yu, Z., Appl. Phys. Lett. 94, 103511 (2009).CrossRefGoogle Scholar
Matsuda, Y. and Deng, W. and Goddard, W. A., J. Phys. Chem. C 114, 17845 (2010).CrossRefGoogle Scholar
Matsuda, Y. and Deng, W. and Goddard, W. A., J. Phys. Chem. C 111, 11113 (2007).CrossRefGoogle Scholar
Liu, H. and Kondo, H. and Ohno, T., Phys. Rev. B 86, 155434 (2012).CrossRefGoogle Scholar
Gong, C., Hinojos, D., Wang, W., Nijem, N., Shan, B., Wallace, R. M., Cho, K., and Chabal, Y. J., ACS Nano 6, 5381 (2012).CrossRefGoogle Scholar
Ugeda, M. M., Fernández-Torre, D., Brihuega, I., Pou, P., Martínez-Galera, A. J., Pérez, R., and Gómez-Rodríguez, J. M., Phys. Rev. Lett. 107, 116803 (2011).CrossRefGoogle Scholar
Watanabe, E., Conwill, A., Tsuya, D., and Koide, Y., Diam. Relat. Mater. 24, 171 (2012).CrossRefGoogle Scholar
Malec, C. E. and Davidovicacute, D., Phys. Rev. B 84, 33407 (2011).CrossRefGoogle Scholar
Malec, C. E., Elkus, B. and Davidovi&cacute, D.;, Solid State Commun. 151, 1791 (2011).CrossRefGoogle Scholar
Gao, J.F., Zhao, J.J. and Ding, F., J. Am. Chem. Soc. 134 (14), 6204 (2012).CrossRefGoogle Scholar
Wu, Y.H., Wang, Y. and Wang, J.Y., AIP Advances 2, 12112 (2012).Google Scholar
Kresse, G. and Furthmüller, J., Comp. Mater. Sci. 6, 15 (1996).CrossRefGoogle Scholar
Wang, Q. J. and Che, J. G., Phys. Rev. Lett. 103, 66802 (2009).CrossRefGoogle Scholar
Taylor, J. and Guo, H. and Wang, J., Phys. Rev. B 63, 245407 (2001).CrossRefGoogle Scholar
Brandbyge, M., Mozos, J., Ordejón, P., Taylor, J., and Stokbro, K., Phys. Rev. B 65, 165401 (2002).CrossRefGoogle Scholar
Stokbro, K., Engelund, M. and Blom, A., Phys. Rev. B 85, 165442 (2012).CrossRefGoogle Scholar