Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T15:50:17.788Z Has data issue: false hasContentIssue false

Mechanical Properties of NiTi-TiC Shape-Memory Composites

Published online by Cambridge University Press:  10 February 2011

D. C. Dunand
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
K. L. Fukami-Ushiro
Affiliation:
Raychem Corp., Menlo Park CA 94025
D. Mari
Affiliation:
ACME, 1015 Lausanne, Switzerland
J. A. Roberts
Affiliation:
LANSCE, Los Alamos National Laboratory, Los Alamos, NM 87545.
M. A. Bourke
Affiliation:
LANSCE, Los Alamos National Laboratory, Los Alamos, NM 87545.
Get access

Abstract

This paper reviews recent work on the mechanical behavior of martensitic NiTi composites reinforced with 10–20 vol.% TiC particulates. The behavior of the composites is compared to that of unreinforced NiTi, so as to elucidate the effect of mismatch due to matrix transformation, thermal expansion, twinning or slip, in the presence of purely elastic particles. The twinning and subsequent thermal recovery of deformed composites, measured both macroscopically (by compressive testing and by dilatometry) and microscopically (by neutron diffraction), are summarized.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rogers, C.A., Liang, C., and Jia, J., Comput. Struct. 38, p. 569 (1991).Google Scholar
2. Hornbogen, E., Thumann, M., and Velten, B., in Progress in Shape Memory Alloys, edited by Eucken, S. (DGM, Oberursel, Germany, City, 1992), p. 225.Google Scholar
3. Ro, J. and Baz, A., Composite Eng. 5, p. 61 (1995).Google Scholar
4. Bidaux, J.E., Manson, J.A., and Gotthardt, R., in First International Conference on Shape Memory and Superelastic Technologies, edited by Pelton, A.R., Hodgson, D., and Duerig, T. (MIAS, Monterey CA, City, 1995), p. 37.Google Scholar
5. Furuya, Y., Sasaki, A., and Taya, M., Mater. Trans. JIM 34, p. 224 (1993).Google Scholar
6. Yamada, Y., Taya, M., and Watanabe, R., Mater. Trans. JIM 34, p. 254 (1993).Google Scholar
7. Mari, D. and Dunand, D.C., Metall. Mater. Trans. 26A, p. 2833 (1995).Google Scholar
8. Mari, D., Bataillard, L., Dunand, D.C., and Gotthardt, R., J. Physique IV 5, p. 659 (1995).Google Scholar
9. Fukami-Ushiro, K.L. and Dunand, D.C., Metall. Mater. Trans. 27A, p. 183 (1996).Google Scholar
10. Fukami-Ushiro, K.L., Mari, D., and Dunand, D.C., Metall. Mater. Trans. 27A, p. 193 (1996).Google Scholar
11. Dunand, D.C., Mari, D., Bourke, M.A.M., and Goldstone, J.A., J. Physique IV 5, p. 653 (1995).Google Scholar
12. Dunand, D.C., Mari, D., Bourke, M.A.M., and Roberts, J.A., Metall. Mater. Trans. 27A, p. 2820 (1996).Google Scholar
13. Clyne, T.W. and Withers, P.J., An Introduction to Metal Matrix Composites. Cambridge University Press, Cambridge, 1993.Google Scholar
14. Miyazaki, S. and Otsuka, K., Metall. Trans. 17A, p. 53 (1986).Google Scholar
15. Johnson, W.A., Domingue, J.A., Reichman, S.H., and Sczerzenie, F.E., J. Physique 43, p. C4 (1982).Google Scholar
16. Salzbrenner, R.J. and Cohen, M., Acta Metall. 27, p. 739 (1979).Google Scholar
17. Ashby, M.F., Phil. Mag. 21, p. 399 (1970).Google Scholar