Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T19:39:09.905Z Has data issue: false hasContentIssue false

Local Hysteresis Behavior of Ferroelectric Thin Films of Si added PbTiO3

Published online by Cambridge University Press:  01 February 2011

V. R. Palkar
Affiliation:
Tata Institute of Fundamental Research, Mumbai 400005, India
M. Higgins
Affiliation:
NEC Research Institute, Inc. Princeton, New Jercy 08540, U.S.A
S. C. Purandare
Affiliation:
Tata Institute of Fundamental Research, Mumbai 400005, India
R. Pinto
Affiliation:
Tata Institute of Fundamental Research, Mumbai 400005, India
S. Bhattacharya
Affiliation:
Tata Institute of Fundamental Research, Mumbai 400005, India NEC Research Institute, Inc. Princeton, New Jercy 08540, U.S.A
Get access

Abstract

We report ferroelectric properties and local hysteresis behavior of 2 mole percent Si added PbTiO3 thin films grown on Pt/TiO2/SiO2/Si substrate by using pulsed laser deposition technique. The ferroelectric hysteresis loop and scanning piezoresponce images obtained on these films by using AFM with conducting tip demonstrate excellent properties, which are equivalent to any other established ferroelectric material like PZT. Si segregating at the grain boundaries controls grain growth. The grain size and grain boundaries play a crucial role in determining ferroelectric hysteresis properties. The presence of Si in the matrix can be useful in tuning the properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Scott, J.F. and Araujo, C. A. P. D., Science 246, 1400 (1989)Google Scholar
2. Evans, J.T. and Womack, R., IEEE J. Solid-State Circuits 23, 1171 (1988)Google Scholar
3. Udayakumar, K.R., Schuele, P.J., Chen, J., Krupanidhi, S. B. and Cross, L.E., J. Appl. Phys. 77, 3981 (1995)Google Scholar
4. Tuttle, B. A., Voigt, J. A., Garino, T. J., Goodnow, D. C., Schwartz, R.W., Lamppa, D.L., Headley, T.J. and Entongh, M. O., ISAF'92 Proceedings of the Eighth IEEE Symposium on Applications of Ferroelectrics 344, (1992).Google Scholar
5. Garino, T. J. and Harrigton, M., Mater. Res. Soc. Symp. Proc. 243, 341 1992.Google Scholar
6. Zavala, G., Fendler, J.H. and Trolier-McKinstry, S., J. Appl. Phys. 81, 7480 (1997)Google Scholar
7. Christman, J.A., Kim, S.H., Maiwa, H., Maria, J. P., Rodriguez, B.J., Kingon, A.I. and Nemanich, R. J., J. of Appl. Physics 87, 8031 (2000)Google Scholar
8. Kholkin, A., Colla, E.L., Tagantsev, A.K., Taylor, D. Y. and Setter, N., Appl. Phys. Lett. 68, 2577 (1996)Google Scholar
9. Purandare, S. C., Palkar, V. R., Apte, P. R. and Pinto, R. Applied Physics Letters 72 (10), 1179 (1998)Google Scholar
10. Palkar, V. R., Purandare, S. C., Pai, S. P., Chattopadhyay, S., Apte, P. R., Pinto, R. and Multani, M. S., Appl. Phys. Letter 68 (11), 1684 (1996)Google Scholar
11. Palkar, V. R., Chattopadhyay, S, Ayyub, P, Multani, M. S, Paranjape, S. K. and Siruguri, V., Materials Letters 32(2–3), 171 (1997)Google Scholar
12. Palkar, V. R., Purandare, S. C., Ayyub, P. and Pinto, R. Journal of Applied Physics 87(1), 462 (2000)Google Scholar
13. Banerjee, R., Purandare, S. C., Palkar, V. R., Pinto, R. J. Phys.: Condensed Matter, 13, 501 (2001)Google Scholar
14. Palkar, V.R., Purandare, S. C. and Pinto, R., Materials Letters, 43, 329 (2000)Google Scholar