Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-17T12:07:10.615Z Has data issue: false hasContentIssue false

2 - Emissions of Air Pollutants and Emission Control Technologies

Published online by Cambridge University Press:  19 June 2019

Christian Seigneur
Affiliation:
École des Ponts Paris Tech
Get access

Summary

Air pollution is due to emissions of pollutants in the atmosphere, which may be natural or of human origin. Thus, in order to understand air pollution, it is necessary to identify, characterize, and quantify those emissions. Furthermore, reducing air pollution requires either eliminating some of those emissions via a change in a product, process, or technology, or reducing those emissions using some control technologies. This chapter describes the main sources of air pollution and the technologies available to control those emissions. First, air pollutant sources are described. Next, the methods used to quantify the corresponding emissions and develop air pollutant emission inventories are presented. Finally, the main technologies used to control emissions of gaseous and particulate air pollutants are described.

Type
Chapter
Information
Air Pollution
Concepts, Theory, and Applications
, pp. 6 - 32
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

André, M., Joumard, R., Vidon, R., Tassel, P., and Perret, P., 2006. Real-world European driving cycles, for measuring pollutant emissions from high- and low-powered cars, Atmos. Environ., 40, 59445953.CrossRefGoogle Scholar
Andreae, M.O. and Merlet, P., 2001. Emissions of trace gases and aerosols from biomass burning, Global Biogeochem. Cycles, 15, 955966.Google Scholar
Bates, T.S., Lamb, B.K., Guenther, A., Dignon, J., and Stoiber, R.E., 1992. Sulfur emissions to the atmosphere from natural sources, J. Atmos. Chem., 14, 315337.CrossRefGoogle Scholar
Bieser, J., Aulinger, A., Matthias, V., Quante, M., and Builjtes, P., 2011. SMOKE for Europe – adaptation, modification and evaluation of a comprehensive emission model for Europe, Geosci. Model Dev., 4, 4768.Google Scholar
Bouwman, A.F., Lee, D.S., Asman, W.A.H., Dentener, F.J., van der Hock, K.W., and Olivier, J.G.J., 1997. A global high-resolution emission inventory for ammonia, Global Biogeochem. Cycles, 11, 561587.CrossRefGoogle Scholar
CAA, 1970. Clean Air Act Extension of 1970, 42 U.S. Code, § 7401 et seq.Google Scholar
CFR, 2016. U.S. Code of Federal Regulations, Title 42 – The Public Health and Welfare, Chapter 85 – Air Pollution Prevention and Control, Subchapter 111 – General Provisions, § 7602 – Definitions.Google Scholar
Chen, R., Aguiléra, V., Mallet, V., Cohn, F., Poulet, D., and Brocheton, F., 2017. A sensitivity study of road transportation emissions at metropolitan scale, J. Earth Sci. Geotech. Eng., 7, 151173.Google Scholar
Code de l’Environnement, 2016. Titre II – Air et atmosphère, Article L220-2. Available at: https://Legifrance.gouv.fr.Google Scholar
Copert, 2006. COPERT 4: Estimating emissions from road transport, European Environmental Agency (EEA), Copenhagen, Denmark, www.eea.europa.eu/publications/copert-4-2014-estimating-emissions.Google Scholar
EC, 2016. Emissions Database for Global Air Research (EDGAR) version 4.3.1, European Commission, Joint Research Centre, Ispra, Italy, http://edgar.jrc.ec.europa.eu.Google Scholar
Flagan, R.C. and Seinfeld, J.H., 1988. Fundamentals of Air Pollution Engineering, Prentice Hall, Englewood Cliffs, NJ.Google Scholar
Franco, V., Kousoulidou, M., Muntean, M., Ntziachristos, L., Hausberger, S., and Dilara, P., 2013. Road vehicle emission factors development: A review, Atmos. Environ., 70, 8497Google Scholar
Gong, S.L., Barrie, L.A., and Lazare, M., 2002. Canadian Aerosol Module (CAM): A size-segregated simulation of atmospheric aerosol processes for climate and air quality models. 2. Global sea-salt aerosol and its budgets, J. Geophys. Res., 107, D24, 4779.Google Scholar
Guenther, A.B., Jiang, X., Heald, C.L., Sakuyanontvittaya, T., Duhl, T., Emmons, L.K., and Wang, X., 2012. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 14711492.Google Scholar
Hugrel, C. and Joumard, R., 2006. Directives et facteurs agrégés d’émission des véhicules routiers en France de 1970 à 2025, Technical report Inrets/LTE n° 0611, Institut français des sciences et technologies des transports, de l’aménagement et des réseaux (Ifsttar), Bron, France.Google Scholar
Khalil, M.A.K. and Rasmussen, R.A., 1990. The global cycle of carbon monoxide, Chemosphere, 20, 227242.Google Scholar
Kopacz, M., Jacob, D.J., Fisher, J.A., Logan, J.A., Zhang, L., Megretskaia, I.A., Yantosca, R.M., Singh, K., Henze, D.K., Burrows, J.P., Buchwitz, M., Khlystova, I., McMillan, W.W., Gille, J.C., Edwards, D.P., Eldering, A., Thouret, V., and Nedelec, P., 2010. Global estimates of CO sources with high resolution by adjoint inversion of multiple satellite datasets (MOPITT, AIRS, SCIAMACHY, TES), Atmos. Chem. Phys., 10, 855876.CrossRefGoogle Scholar
Kousoulidou, M., Ntziachristos, L., Mellios, G., and Samaras, Z., 2008. Road-transport emission projections to 2020 in European urban environments, Atmos. Environ., 42, 74657475.Google Scholar
Lee, C., Martin, R.V., van Donkelaar, A., Lee, H., Dickerson, R.R., Hains, J.C., Krotkov, N., Richter, A., Vinnikov, K., and Schwab, J.J., 2011. SO2 emissions and lifetimes: Estimates from inverse modeling using in situ and global, space-based (SCIAMACHY and OMI) observations, J. Geophys. Res., 116, D06304.Google Scholar
Logan, J.A., 1983. Nitrogen oxides in the troposphere: Global and regional budgets, J. Geophys. Res., 88, 1078510807.CrossRefGoogle Scholar
MEEM, 2016. Rapport final de la commission indépendante mise en place par la Ministre Ségolène Royal après la révélation de l’affaire Volkswagen – Contrôle des émissions de polluants atmosphériques et de CO2 mené sur 86 véhicules, Ministère de l’Environnement, de l’Énergie et de la Mer, Paris, France.Google Scholar
Mieville, A., Granier, C., Liousse, C., Guillaume, B., Mouillot, F., Lamarque, J.-F., Grégoire, J.-M., and Pétron, G., 2010. Emission of gases and particles from biomass burning during the 20th century using satellite data and an historical reconstruction, Atmos. Environ., 44, 14691477.CrossRefGoogle Scholar
Morawska, L., Ristovski, Z., Jayaratne, E.R., Keogh, D.U., and Ling, X., 2008. Ambient nano and ultrafine particles from motor vehicle emissions: Characteristics, ambient processing and implications on human exposure, Atmos. Environ., 42, 81138138.Google Scholar
Seigneur, C., 2009. Current understanding of ultra fine particulate matter emitted from mobile sources, J. Air Waste Manage. Assoc., 59, 317.CrossRefGoogle Scholar
Simpson, D., Winiwarter, W., Börjesson, G., Cinderby, S., Ferreiro, A., Guenther, A., Hewitt, C., Janson, R., Khalil, M., Owen, S., Pierce, T., Puxbaum, H., Shearer, M., Skiba, U., Steinbrecher, R., Tarrason, L., and Oquist, M., 1999. Inventorying emissions from nature in Europe. J. Geophys. Res., 104, 81138152.Google Scholar
Song, C., 2003. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel, Catalysis Today, 86, 211263.Google Scholar
Srivastava, R.K. and Josewicz, W., 2001. Flue gas desulfurization: The state of the art, J. Air Waste Manage. Assoc., 51, 16761688.Google Scholar
Srivastava, R.K., Hall, R.E., Khan, S., Culligan, K., and Lanu, B.W., 2005. Nitrogen oxides emission control options for coal-fired electric utility boilers, J. Air Waste Manage. Assoc., 55, 13671388.Google Scholar
Thompson, G.J., Carder, D.K., Besch, M.C., Thiruvengadam, A., and Kappanna, H.K., 2014. In-use emissions testing of light-duty diesel vehicles in the United States, Final report, Centre for Alternative Fuels, Engines & Emissions, West Virginia University, Morgantown, WV.Google Scholar
Waked, A., Afif, C., and Seigneur, C., 2012. An atmospheric emission inventory of anthropogenic and biogenic sources for Lebanon, Atmos. Environ., 50, 8896.Google Scholar
Wang, L.K., Pereira, N.C., and Hung, Y.-T., eds., 2005. Advanced Air and Noise Pollution Control, Humana Press, Totowa, NJ.Google Scholar
Zender, C.S., Bian, H., and Newman, D., 2003. Mineral dust entrainment and deposition (DEAD) model: Description and 1990s dust climatology, J. Geophys. Res., 108, D14, 4416.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×