Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T20:38:22.677Z Has data issue: false hasContentIssue false

Sticking and Desorption Coefficients of As4 and As2 During Group V and Group III Controlled MBE Growth

Published online by Cambridge University Press:  25 February 2011

Rouel Fernandez*
Affiliation:
Lockheed Missiles & Space Company, Inc., Palo Alto, CA.
Get access

Abstract

Reflection High Energy Electron Diffraction (RHEED) oscillations under arsenic and gallium-controlled Molecular Beam Epitaxy (MBE) growth conditions have been used to measure the sticking and desorption coefficients of As2 and As4. The coefficients are obtained from measurements of the arsenic incorporation rates. Comparisons are made with measurements obtained from desorption rates using modulated beam mass spectroscopy. The transition from gallium to arsenic-controlled growth is observed to occur after excess gallium atoms accumulate on the surface. The maximum intrinsic arsenic sticking coefficients occur when the maximum number of gallium atoms can be incorporated for a given arsenic flux. The intrinsic maximum arsenic sticking coefficients are found to be 0.75 and 0.50 for As2 and As4, respectively. During galliumcontrolled growth, the arsenic sticking coefficients are independent of substrate temperature as long as the sticking coefficient of gallium is equal to one. However, a temperature dependent maximum gallium-controlled arsenic sticking coefficient exists. It can be measured by the maximum Ga to As4 flux ratio that produces specular film surfaces. During gallium-controlled growth, the Ga to As flux ratios are shown to be equal to the gallium-controlled arsenic sticking coefficients. The activation energy for arsenic desorption during arsenic-controlled growth conditions was measured as -0.50 eV for independent As4 and As2 incident fluxes. During gallium-controlled growth with incident As4 fluxes, an activation energy for arsenic desorption of -0.70 eV was measured for the maximum gallium-controlled arsenic sticking coefficients.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Foxon, C. T., Boudry, M. R. and Joyce, B. A., Surface Sci. 44, 69 (1974).Google Scholar
2. Foxon, C. T. and Joyce, B. A., Surface Sci. 50, 434 (1975).Google Scholar
3. Foxon, C. T. and Joyce, B. A., Surface Sci. 64, 293 (1977).Google Scholar
4. Daweritz, L., Surface Sci 118, 585 (1982).Google Scholar
5. Farrell, H. H., Harbison, J. P., and Peterson, L. D., J. Vac. Sci. Technol. B, 5 (5), 1482 (1987).Google Scholar
6. Knibb, M. G. and Makysym, P. A., Surface Sci. 195, 475 (1988).Google Scholar
7. McCoy, J. M., Maksym, P. A., J. Crystal Growth 111, 178 (1991).Google Scholar
8. Schweizer, T., Kohler, K., Ganser, P., As, D. J., Bachem, K. H., Superlattices and Microstructures 8, (2), 179 (1990).Google Scholar
9. Resh, J. S., Jamison, K. D., Strozier, J., Ignatiev, A., Rev. Sci. Instrum. 61, (2), 771 (1990).Google Scholar
10. Joyce, B. A., Zhang, J., Neave, J. H., Dobson, P. J., Appl. Phys. A 45, 255 (1988).Google Scholar
11. Farley, C. W., Streetman, B. G., J. Vac. Sci. Technol. B 6 (2), 749 (1988).Google Scholar
12. Cohen, P. I., Pukite, P. R., Hove, J. M. Van, Lent, C. S., J. Vac. Sci. Technol. A 4 (3), 1251 (1986).Google Scholar
13. Joyce, B. A., Dobson, P. J., Neave, J. H., Zhang, J., Surface Sci. 174, 1 (1986).Google Scholar
14. Zhang, J., Neave, J. H., Dobson, P. J., Joyce, B. J., Appl. Phys. A 42, 317 (1987).Google Scholar
15. Chen, P., Kim, J. Y., Madhukar, A., Cho, N. M., J. Vac. Sci. Technol. B 4 (4), 890 (1986).Google Scholar
16. Lewis, B. F., Grunthaner, F. J., Madhukar, A., Lee, T. C, Fernandez, R., J. Vac. Sci. Technol. B 3 (5), 1317 (1985).Google Scholar
17. Neave, J. H., Dobson, P. J., Joyce, B. A., Zhang, J., Appl. Phys. Lett. 42 (2), 100 (1985).Google Scholar
18. Neave, J. H., Joyce, B. A., Dobson, P. J., Norton, N., Appl. Phys. A 31, 1 (1983).Google Scholar
19. Neave, J. H., Joyce, B. A., Dobson, P. J., Appl. Phys. A 34, 179 (1984).Google Scholar
20. Pukite, P. R., Hove, J. M. Van, Cohen, P. I., J. Vac. Sci. Technol. B 2 (2), 243 (1984).Google Scholar
21. Pukite, P. R., Hove, J. M. Van, Cohen, P. I., Appl. Phys. Lett. 44, 456 (1984).Google Scholar
22. Hove, J. M. Van, Lent, C. S., Pukite, P. R., Cohen, P. I., J. Vac. Sci. Technol. 81, 741 (1983).Google Scholar
23. Hove, J. M. Van, Cohen, P. I., Lent, C. S., J. Vac. Sci. Technol. A 1 (2), 546 (1983).Google Scholar
24. Maksym, P. A., Semicond. Sci. Technol. 1, 594 (1988).Google Scholar
25. Ghaisas, S. V., Madhukar, A., J. Appl. Phys. 65 (5), 1888 (1989).Google Scholar
26. Clarke, Shaun, Vvedensky, Dimitri D., Phys. Rev. B 36, (17), 9312 (1987).Google Scholar
27. Clarke, Shaun, Vvedensky, Dimitri D., Surface Sci. 189/190, 1033 (1987).Google Scholar
28. Chow, Robert and Fernandez, Rouel, Mat. Res. Soc. Symp. Proc. Vol 145, 13 (1989).Google Scholar
29. Farley, C. W., Sullivan, G. J., Mondry, M. J., Miller, D. L., J. Crystal Growth 96, 19 (1989).Google Scholar
30. Fernandez, Rouel, J. Vac. Sci. Technol. B 6 (2), 745 (1988).Google Scholar
31. Fernandez, Rouel, J. Crystal Growth 116, 98 (1992).Google Scholar
32. Kobayashi, K., Kamata, N., Fujimoto, I., Okada, M., Suzuki, T., J. Vac. Sci. Technol. B 3 (2), 753 (1985).Google Scholar
33. Daweritz, L., Superlattices and Microstructures 9 (2), 141 (1991).Google Scholar