Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-16T09:04:01.227Z Has data issue: false hasContentIssue false

Compositional Ordering in Semiconductor Alloys

Published online by Cambridge University Press:  15 February 2011

G. B. Stringfellow*
Affiliation:
University of Utah Salt Lake City, Utah 84112
Get access

Abstract

Compositional ordering has been observed in a wide variety of III/V semiconductor alloys as well as in SiGe alloys. The thermodynamic driving force is now understood in terms of minimization of the microscopic strain energy of the bonds in the solid. However, the mechanism leading to the specific ordered structures formed is only now beginning to be understood. It appears to be intimately related to the physical processes occurring on the surface during epitaxial growth, specifically surface reconstruction and the attachment of atoms at steps and kinks. Thus, an improved understanding the ordering process may lead to a better understanding of the surface processes occurring during epitaxial growth from the vapor.

This paper will review the current understanding of the ordering process, including discussions of the arrangement of atoms on the surface and the nature of surface steps. The emphasis will be on the use of patterned surfaces to investigate and control the ordered structures formed during organometallic vapor phase epitaxial growth of GaInP. Using photolithography and chemical etching, [110]-oriented steps are formed on the (001) GaAs substrate. The direction of motion of these steps determines the specific variant of the Cu-Pt ordered structure (with ordering on (111) planes) formed. The step density at the edge of the groove apparently determines the degree of order. Highly stepped surfaces suppress ordering or lead to small domains of a single variant. When the steps are very shallow, the large domain of the predominant variant is filled with “inclusions” of the second variant. Step edges that are oriented at nearly 160 from (001) form a {511} variant during growth. This facet is observed to grow at the expense of adjacent (001) surfaces and to produce material that is completely disordered.

Growing on intentionally misoriented substrates leads to interesting structures consisting of both large, highly-ordered domains and disordered material. This allows, using cathodoluminescence(CL) imaging, a direct determination of the effect of ordering on the energy band gap. In the GaInP samples studied, the CL images show that the disordered material has a distinct emission pattern consisting of a single, sharp peak at an energy more than 100 meV higher than that observed in the adjacent ordered region.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Stringfellow, G. B. and Chen, G. S., J. Vac. Sci. Technol. B9, 2182 (1991).CrossRefGoogle Scholar
2) LeGoues, F.K, Kesan, V.P., Iyer, S.S., Tersoff, J., and Tromp, R., Phys. Rev. Lett. 64, 2038 (1990).Google Scholar
3) Hume-Rothery, W., Electrons, Atoms, Metals, and Alloys, 3rd ed. (Dover, New York, 1963) ch. 39.Google Scholar
4) Ichimura, M. and Sasaki, A., J. Appl. Phys. 60, 3850 (1986).Google Scholar
5) Srivastava, G.P., Martins, J.L., and Zunger, A., Phys.Rev. B31, 2561Google Scholar
6) Bernard, J.E., Dandrea, R.G., Ferreira, L.G., Froyen, S., Wei, S.H., and Zunger, A., Appl. Phys. Lertt. 56, 731 (1990).Google Scholar
7) Wei, S.H. and Zunger, A., Phys. Rev. B, 39, 3279 (1989).Google Scholar
8) Gomyo, A., Suzuki, T., Kobayashi, K., Kawata, S., Hino, I., and Yuasa, T., Appl. Phys. Lett. 50, 673 (1987); T. Suzuki, A. Gomyo, and S.lijima, J. Crystal Growth 93, 396 (1988); R. P. Schneider, E. D. Jones, J. A. Lott, and R. P. Bryan, J. Appl. Phys. 72, 5397 (1992).Google Scholar
9) LC. Su, Christen, J., Selber, H., Pu, S. T., Stringfellow, G. B., and Bimberg, D., Appl. Phys. Lett. (to be published).Google Scholar
10) Ikeda, M., Morita, E., Toda, A., Yamamoto, T., and Kaneko, K., Electron. Lett. 24, 1094 (1988).Google Scholar
11) Wei, S.H. and Zunger, A., Appl. Phys. Lett. 58, 2684 (1991).Google Scholar
12) Fukui, T., J. Cryst. Growth 93, 301 (1988).Google Scholar
13) see, for example, Ueda, O., Hoshino, M., Takechi, M., and Ozeki, M., J.Appl. Phya. 68, 4268 (1990).Google Scholar
14) Kuan, T. S., Kuech, T. F., Wang, W. I., and Wilkie, E. L., Phys. Rev. Lett. 54, 201 (1985).; Kuan,Google Scholar
15) Ueda, O., Nakata, Y., and Fukii, T., Appl. Phys. Lett. 58, 705 (1991).CrossRefGoogle Scholar
16) Gomyo, A., Suzuki, T., Ijima, S., Hotta, H., Fujii, H., Kawata, S., Kobayashi, K., Ueno, Y., and Hino, I., Japan. J. Appl. Phys. 27, L2370 (1988).Google Scholar
17) Jen, H. R., Jou, M. J., Chemg, Y. T., and Stringfellow, G. B., J. Cryst. Growth 85, 175 (1987).Google Scholar
18) Valster, A., Liedenbaum, C. T. H. F., Finke, N. M., Severens, A. L. G., Boermans, M. J. B., Vandenhoudt, D. W. W., and Bulle-Lieuwma, C. W. T., J. Crystal Growth 107, 403 (1991).Google Scholar
19) Joyce, B. A., in Advanced Crystal Growth ed Dryburgh, P. M., Cockayne, B., and Barraclough, K. G., (Prentice Hall, London, 1987) pp. 337385.Google Scholar
20) Pashley, M. D., Haberem, K. W., Friday, W., Woodall, J. M., and Kirchner, P. D., Phys. Rev. Lett. 60, 2176(1988).Google Scholar
21) Biegelsen, D. K., Bringans, R. D., Northrup, J. E., and Swartz, L. E., Phys. Rev. B 41, 5701(1990).Google Scholar
22) Chadi, D. I., J. Vac. Sci. Technol. A5, 834(1987).Google Scholar
23) Horikoshi, Y., Yamaguchi, H., Briones, F., and Kawashima, M., J.Crystal Growth 105, 326(1990).Google Scholar
24) Pemble, M. E., Buhaenko, D. S., Francis, S. M., Goulding, P. A., and Allen, J. T., J. Crystal Growth 107, 37(1991).Google Scholar
25) Lamelas, F. J., Fuoss, P. H., Imperatori, P., Kisker, D. W., Stephenson, G. B., and Brennan, S., Appl. Phys. Lett. 60, 2610(1992).Google Scholar
26) Aspnes, D. E., Colas, E., Studna, A. A., Bhat, R., Koza, M. A., and Keramidas, V. G., Phys. Rev. Lett. 61, 2782(1988); D.E. Aspnes, R. Bhat, C. Caneau, E. Colas, L.T. Florez, S. Gregory, J. P. Harbison, I. Kamiya, V. G. Keramidas, M. A. Koza, M. A. A. Pudensi, W.E. Quinn, S.A. Schwarz, M. C.Tamargo, and H. Tanaka, J. Crystal Growth 120, 71(1992).Google Scholar
27) Kamiya, I., Tanaka, H., Aspnes, D. E., Florez, L. T., Colas, E., Harbison, J. P., and Bhat, R., Appl. Phys. Lett. 60, 1238(1992).Google Scholar
28) Tsuda, H. and Mizutani, T., J. Crystal Growth 111, 88 (1991).Google Scholar
29) Ogale, S. B. and Madhukar, A., Appl. Phys. Lett. 60, 2095 (1992).CrossRefGoogle Scholar
30) Suzuki, T., Gomyo, A., Hino, I., Kobayashi, K., Kawata, S., and Iijima, S., Jpn. J. Appl. Phys. 27, L1549 (1988); J. P. Goral, S. R. Kurtz, J. M. Olson, and A. Kibbler, J. Electron. Mater. 19, 95 (1990); S. Froyen and A. Zunger, Phys. Rev. Lett. 66, 2132 (1991).Google Scholar
31) Kasu, M. and Kobayashi, N., Appl. Phys. Lett. 62, 1262 (1993); T. Fukui, M. Kasu, J. Ishizaki, S. Goto, M. Kishida, S. Ham, H. Ishii, and H. Hasegawa, in Crystal Growth Mechanism in Atomic Scale, Proceedings of the 6th Topical Meeting on Crystal Growth Mechanism, Awara, Japan, 20-22 January, 1993, ed. T. Nishinaga, 135 (1993).Google Scholar
32) Pashley, M. D., J. Crystal Growth 99, 473 (1990); P.R. Pukite, G.S. Petrich, S. Batra, and P. I. Cohen, J. Crystal Growth 95, 269 (1989).Google Scholar
33) Cao, D. S., Kimball, A. W., Chen, G. S., Fry, K. L., and Stringfellow, G. B., J. Appl. Phys. 66, 5384 (1989).Google Scholar
34) Su, L. C., Pu, S. T., Stringfellow, G. B., Christen, J., Selber, H., and Bimberg, D., J. Electron. Mater. (to be published).Google Scholar
35) Suzuki, T., Gomyo, A., and Iijima, S., J. Crystal Growth 99 396 (1988).Google Scholar
36) Chen, G. S. and Stringfellow, G. B. Appl. Phys. Lett. 59 3258 (1991).Google Scholar
37) Ranke, W., Phys. Rev. B 41, 5243 (1990).Google Scholar
38) Bartolini, A., Ercolessi, F., and Tosatti, E., Phys. Rev. Lett. 63, 872 (1989).Google Scholar
39) Nilsson, S., Van Gieson, E., Arent, D.J., Meier, H.P., Walter, W., and Forster, T., Appl. Phys. Lett. 55, 972 (1989).Google Scholar
40) Isu, T., Hata, M., Morishita, Y., Nomura, Y., and Katayama, Y., J. Crystal Growth 115, 423 (1991).Google Scholar
41) Hata, M., Watanabe, A., and Katayama, Y., Appl. Phys. Lett. 56, 2542 (1990).Google Scholar