Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T21:02:39.573Z Has data issue: false hasContentIssue false

Imaging And Spectroscopy Of Nanostructures Through Aberration-Corrected Stem

Published online by Cambridge University Press:  01 February 2011

S. J. Pennycook
Affiliation:
Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN Department of Physics and Astronomy, Vanderbilt University, Nashville, TN
M. F. Chisholm
Affiliation:
Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN
A. R. Lupini
Affiliation:
Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN
A. Borisevich
Affiliation:
Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN
K. Sohlberg
Affiliation:
Department of Chemistry, Drexel University, Philadelphia, PA
J. R. Mcbride
Affiliation:
Department of Chemistry, Vanderbilt University, Nashville, TN
S. J. Rosenthal
Affiliation:
Department of Chemistry, Vanderbilt University, Nashville, TN
D. Kumar
Affiliation:
North Carolina A&T State University, Greensboro, NC
A. Franceschetti
Affiliation:
Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN Department of Physics and Astronomy, Vanderbilt University, Nashville, TN
S. Rashkeev
Affiliation:
Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN Department of Physics and Astronomy, Vanderbilt University, Nashville, TN
S. Wang
Affiliation:
Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN Department of Physics and Astronomy, Vanderbilt University, Nashville, TN
S. T. Pantelides
Affiliation:
Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN Department of Physics and Astronomy, Vanderbilt University, Nashville, TN
Get access

Summary

The aberration-corrected STEM allows nanostructures to be investigated with greater resolution and sensitivity than ever before. Single atom sensitivity is achieved both in imaging and also for spectroscopy, for atoms on surfaces or within the bulk. Nanocrystal size, shape, surface termination, 3D structure and the presence of any defects can be seen with unprecedented ease. The improved sensitivity provides improved input for theory, allowing new insights into nanostructure properties and the origin of their unique functionality. Furthermore, the larger aperture available with aberration-corrected STEM improves the depth resolution dramatically. Nanometer depth resolution can be achieved by simply taking a focal series of images, which may then be reconstructed into a 3D rendering of the material in the same manner as with confocal optical microscopy but maintaining sensitivity to individual atoms.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nellist, P. D., Chisholm, M. F., Dellby, N., Krivanek, O. L., Murfitt, M. F., Szilagyi, Z. S., Lupini, A. R., Borisevich, A., Sides, W. H., and Pennycook, S. J., “Direct sub-angstrom imaging of a crystal lattice,” Science 305(5691), 1741–1741 (2004).Google Scholar
2. Varela, M., Findlay, S. D., Lupini, A. R., Christen, H. M., Borisevich, A. Y., Dellby, N., Krivanek, O. L., Nellist, P. D., Oxley, M. P., Allen, L. J., and Pennycook, S. J., “Spectroscopic imaging of single atoms within a bulk solid,” Physical Review Letters 92(9), 095502 (2004).Google Scholar
3. Nellist, P. D. and Pennycook, S. J., “Direct imaging of the atomic configuration of ultradispersed catalysts,” Science 274(5286), 413415 (1996).Google Scholar
4. Sohlberg, K., Rashkeev, S., Borisevich, A. Y., Pennycook, S. J., and Pantelides, S. T.,“Origin of anomalous Pt-Pt distances in the Pt/alumina catalytic system,” Chemphyschem 5(12), 18931897 (2004).Google Scholar
5. Haruta, M., “Size and support dependency in the catalysis of gold,” in Catalysis Today, (1997), pp. 153166.Google Scholar
6. Valden, M., Lai, X., and Goodman, D. W., “Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties,” Science 281(5383), 16471650 (1998).Google Scholar
7. Chen, M. S. and Goodman, D. W., “The structure of catalytically active gold on titania,” Science 306(5694), 252255 (2004).Google Scholar
8. Zhu, H. G., Pan, Z. W., Chen, B., Lee, B., Mahurin, S. M., Overbury, S. H., and Dai, S., “Synthesis of ordered mixed titania and silica mesostructured monoliths for gold catalysts,” Journal Of Physical Chemistry B 108(52), 2003820044 (2004).Google Scholar
9. Schwartz, V., Mullins, D. R., Yan, W. F., Chen, B., Dai, S., and Overbury, S. H., “XAS study of Au supported on TiO2: Influence of oxidation state and particle size on catalytic activity,” Journal Of Physical Chemistry B 108(40), 1578215790 (2004).Google Scholar
10. Rodriguez, J. A., Liu, G., Jirsak, T., Hrbek, J., Chang, Z. P., Dvorak, J., and Maiti, A., “Activation of gold on titania: Adsorption and reaction of SO2 on Au/TiO2(110),” Journal of the American Chemical Society 124(18), 52425250 (2002).Google Scholar
11. Wang, S. W., Borisevich, A. Y., Rashkeev, S. N., Glazoff, M. V., Sohlberg, K., Pennycook, S. J., and Pantelides, S. T., “Dopants adsorbed as single atoms prevent degradation of catalysts,” Nature Materials 3(3), 143146 (2004).Google Scholar
12. Kadavanich, A. V., Kippeny, T. C., Erwin, M. M., Pennycook, S. J., and Rosenthal, S. J., “Sublattice resolution structural and chemical analysis of individual CdSe nanocrystals using atomic number contrast scanning transmission electron microscopy and electron energy loss spectroscopy,” Journal of Physical Chemistry B105(2), 361369 (2001).Google Scholar
13. Talapin, D. V., Koeppe, R., Gotzinger, S., Kornowski, A., Lupton, J. M., Rogach, A. L., Benson, O., Feldmann, J., and Weller, H., “Highly emissive colloidal CdSe/CdS heterostructures of mixed dimensionality,” Nano Letters 3(12), 16771681 (2003).Google Scholar
14. Kumar, D., Pennycook, S. J., Lupini, A., Duscher, G., Tiwari, A., and Narayan, J., “Synthesis and atomic-level characterization of Ni nanoparticles in A1203 matrix,” Applied Physics Letters 81(22), 42044206 (2002).Google Scholar
15. Pennycook, S. J., Lupini, A. R., Borisevich, A., Peng, Y., and Shibata, N., “3D Atomic Resolution Imaging through Aberration-Corrected STEM,” Microscopy and Microanalysis 10 (Suppl.2), 11721173 (2004).Google Scholar