Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T10:53:32.468Z Has data issue: false hasContentIssue false

Cardiocystella, a new cornute stylophoran from the Upper Cambrian Whipple Cave Formation, Eastern Nevada, USA

Published online by Cambridge University Press:  14 July 2015

Colin D. Sumrall
Affiliation:
Department of Earth and Planetary Sciences, University of Tennessee, 1412 Circle Drive, 306 Earth and Planetary Sciences Building, Knoxville 37996-1410,
James Sprinkle
Affiliation:
Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, 1 University Station C1100, Austin 78712-0254,
Sara Pruss
Affiliation:
Department of Geology, Smith College, 44 College Lane, Northampton, Massachusetts 01063,
Seth Finnegan
Affiliation:
Department of Geological and Earth Sciences, Stanford University, Stanford, California 94350,

Abstract

Two new well-preserved cornute stylophorans from the Upper Cambrian Whipple Cave Formation represent a new genus and species assigned here to Cardiocystella prolixora. These nearly complete specimens contain morphological information not available from other cornute specimens previously collected from this formation. Both specimens are preserved with superior faces exposed. One specimen contains a nearly complete theca but a somewhat disrupted aulacophore, whereas the other theca has been partially damaged by burrows but has a nearly complete but moderately eroded aulacophore. Cardiocystella prolixora exhibits wide marginals, abundant supracentral platelets, and an aulacophore with cover plates. Supracentral platelets cover much of the interior regions of the theca, which lacks a visible zygal bar in both specimens. In holotype 1791TX13, a bulge in the superior face of the theca likely shows the zygal bar position. The wide marginals of these new specimens resemble those of a specimen previously described from a partial theca and aulacophore assigned to Archaeocothurnus species indeterminate (Sumrall et al., 1997); however, the specimens described here are heart-shaped rather than boot-shaped. The placement of this specimen in a new genus and species is based on its unique marginal shape and arrangement.

Type
Paleontological Notes
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bather, F. A. 1913. Caradocian Cystidea from Girvan. Royal Society of Edinburgh, Transactions, 49:359529.CrossRefGoogle Scholar
Clausen, S. and Smith, A. B. 2005. Palaeoanatomy and biological affinities of a Cambrian deuterostome (Stylophora). Nature, 438:351354.CrossRefGoogle Scholar
Cook, H. E. and Taylor, M. E. 1975. Early Paleozoic continental margin sedimentation, trilobite biofacies, and the thermocline, western United States. Geology, 3:559562.2.0.CO;2>CrossRefGoogle Scholar
David, B., Lefebvre, B., Mooi, R., and Parsley, R. L. 2000. Are homalozoans echinoderms? An answer from axial-extraxial theory. Paleobiology, 26:529555.2.0.CO;2>CrossRefGoogle Scholar
Droser, M. L. and Bottjer, D. J. 1986. A semiquantitative field classification of ichnofabric. Journal of Sedimentary Petrology, 56:558559.CrossRefGoogle Scholar
Gill, E. D. and Caster, K. E. 1960. Carpoid echinoderms from the Silurian and Devonian of Australia. Bulletin of American Paleontology, 41:743.Google Scholar
Guensburg, T. E. and Sprinkle, J. 2000. Ecologic radiation of Cambro-Ordovician echinoderms, p. 429444. In Zhuravlev, A. Y. and Riding, R. (eds.), The Ecology of the Cambrian Radiation. Columbia University Press, New York.Google Scholar
Jaekel, O. 1901. Über Carpoideen ein neue klasse Pelmatozoen. Zeitschrift der Deutschen geologischen Gesellschaft, 52:661677.Google Scholar
Jefferies, R. P. S. 1986. The Ancestry of the Vertebrates. British Museum (Natural History) and Cambridge University Press, 376 p.Google Scholar
Jefferies, R. P. S. 1997. How chordates and echinoderms separated from each other and the problem of dorso-ventral inversion, p. 249266. In Waters, J. A. and Maples, C. G. (eds.), Geobiology of Echinoderms. Paleontological Society Papers, Volume 3.CrossRefGoogle Scholar
Kellogg, H. E. 1963. Paleozoic stratigraphy of the southern Egan Range, Nevada. Geological Society of America Bulletin, 74:685704.CrossRefGoogle Scholar
Kolata, D. R., Frest, T. J., and Mapes, R. H. 1991. The youngest carpoid: Occurrence, affinities, and life mode of a Pennsylvanian (Morrowan) mitrate from Oklahoma. Journal of Paleontology, 65:844855.CrossRefGoogle Scholar
Lee, S., Lefebvre, B., and Choi, D. K. 2005. Latest Cambrian cornutes (Echinodermata: Stylophora) from the Taebaeksan Basin, Korea. Journal of Paleontology, 79:139151.2.0.CO;2>CrossRefGoogle Scholar
Lee, S., Lefebvre, B., and Choi, D. K. 2006. Tremadocian Stylophoran echinoderms from the Taebaeksan Basin, Korea. Journal of Paleontology, 80: 10721086.CrossRefGoogle Scholar
Lefebvre, B. 2000. Homologies in Stylophora: A test of the “Calcichordate Theory”. Geobios, 33:359364.CrossRefGoogle Scholar
Lefebvre, B. 2003. Functional morphology of stylophoran echinoderms. Palaeontology, 46:511555.CrossRefGoogle Scholar
Lefebvre, B. and David, B. 2001. Ichnological evidence on the behavior of mitrates: reply. Lethaia, 34:260261.CrossRefGoogle Scholar
Lefebvre, B. and Fatka, O. 2003. Palaeogeographical and palaeoecological aspects of the Cambro-Ordovician radiation of echinoderms in Gondwana Africa and peri-Gondwana Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 195:7397.CrossRefGoogle Scholar
Lefebvre, B., Racheboeuf, P., and David, B. 1998. Homologies in stylophoran echinoderms, p. 103109. In Mooi, R. and Telford, M. (eds.), Echinoderms: San Francisco A. A. Balkema, Rotterdam.Google Scholar
Lefebvre, B. and Vizcaino, D. 1999. New Ordovician cornutes (Echinodermata, Stylophora) from the Montagne Noire and Brittany (France) and a revision of the order Cornuta Jaekel 1901. Geobios, 32:421458.CrossRefGoogle Scholar
Parsley, R. L. 1997. The echinoderm classes Stylophora and Homoiostelea: Non Calcichordata, p. 225248. In Waters, J. A. and Maples, C. G. (eds.), Geobiology of Echinoderms. Paleontological Society Papers, Volume 3.Google Scholar
Parsley, R. L. 1998. Taxonomic revisions of the Stylophora, p. 111117. In Mooi, R. and Telford, M. (eds.), Echinoderms: San Francisco A. A. Balkema, Rotterdam.Google Scholar
Parsley, R. L. and Sumrall, C. D. 2007. New recumbent echinoderm genera from the Bois D'Arc Formation: Lower Devonian (Lochkovian) of Coal County, Oklahoma. Journal of Paleontology, 81:14861493.CrossRefGoogle Scholar
Philip, G. M. 1979. Carpoids-echinoderms or chordates? Biological Review, 54:439471.CrossRefGoogle Scholar
Ruta, M. 1999. A brief review of the stylophoran debate. Evolution and Development, 1:123135.CrossRefGoogle ScholarPubMed
Ruta, M. 2003. A species-level supertree for stylophoran echinoderms. Acta Palaeontologica Polonica, 48:559568.Google Scholar
Smith, A. B. and Jell, P. A. 1990. Cambrian edrioasteroids from Australia and the origin of starfishes. Memoirs of the Queensland Museum, 28:715778.Google Scholar
Sumrall, C. D. and Sprinkle, J. 1999. Ponticulocarpus, a new cornute-grade stylophoran from the Middle Cambrian Spence Shale of Utah. Journal of Paleontology, 73:886891.CrossRefGoogle Scholar
Sumrall, C. D., Sprinkle, J., and Guensburg, T. E. 1997. Systematics and paleoecology of Late Cambrian echinoderms from the western United States. Journal of Paleontology, 71:10911109.CrossRefGoogle Scholar
Sumrall, C. D. and Wray, G. A. 2007. Ontogeny in the fossil record: diversification of body plans and the evolution of “aberrant” symmetry in Paleozoic echinoderms. Paleobiology, 33:149163.CrossRefGoogle Scholar
Sutcliffe, O. E., Sudkamp, W. H., and Jefferies, R. P. S. 2000. Ichnological evidence on the behavior of mitrates: two trails associated with the Devonian mitrate Rhenocystis . Lethaia, 33:112.CrossRefGoogle Scholar
Taylor, M. E., Cook, H. E., and Miller, J. F. 1989. Day 3: Late Cambrian and Early Ordovician Biostratigraphy and Depositional Environments of the Whipple Cave Formation and House Limestone, Central Egan Range, Nevada, p. 3744. In Taylor, M. E. (ed.), Cambrian and Early Ordovician Stratigraphy and Paleontology of the Basin and Range Province, Western United States, Guidebook for Field Trip T125. 28th International Geological Congress, Washington D.C.CrossRefGoogle Scholar
Ubaghs, G. 1963. Cothurnocystis Bather, Phyllocystis Thoral and an undetermined member of the order Soluta (Echinodermata, Carpoidea) in the uppermost Cambrian of Nevada. Journal of Paleontology, 37:11331142.Google Scholar
Ubaghs, G. 1998. New Upper Cambrian Echinoderms from Montagne Noire (Southern France). Geobios, 31:809829.CrossRefGoogle Scholar