Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-17T10:43:45.398Z Has data issue: false hasContentIssue false

Low Cost Integrated Sensors Utilizing Patterned Nano-Structured Titania Arrays Fabricated Using a Simple Process

Published online by Cambridge University Press:  01 February 2011

Zuruzi Abu Samah
Affiliation:
Materials Department and echanical and Environmental Engineering Department, University of California at Santa Barbara, California, CA 93106.
Andrei Kolmakov
Affiliation:
Chemistry and Biochemistry Department, University of California at Santa Barbara, CA 93106.
Martin Moskovits
Affiliation:
Chemistry and Biochemistry Department, University of California at Santa Barbara, CA 93106.
Noel C. MacDonald
Affiliation:
Materials Department and echanical and Environmental Engineering Department, University of California at Santa Barbara, California, CA 93106.
Get access

Abstract

Using a novel low-temperature process, we demonstrate the facile integration of crack-free nanostructured titania (NST) as sensing elements in microsystems. Unlike conventional sol-gel methods, NST layers of interconnected nano-walls and nano-wires were formed by reacting Ti surfaces with aqueous hydrogen peroxide solution. Cracks were observed in NST layers formed on blanket Ti films but absent on arrays of patterned Ti pads below a threshold dimension. Analyses using TEM, high resolution SEM, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) reveal that NST consists of anatase TiO2 nano-crystals. NST pads were found able to detect oxygen gas of a few ppm. NST pad arrays were integrated on rigid and flexible substrates with potential applications in low cost and wearable sensing systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Kong, J., Franklin, N., Zhou, C., Chapline, M. G., Peng, S., Cho, K., Dai, H., Science 2000, 287, 622.Google Scholar
[2] Cui, Y., Wei, Q., Park, H., Lieber, C. M., Science 2001, 293, 1289.Google Scholar
[3] Favier, F., Walter, E. C., Zach, M. P., Benter, T., Penner, , Science 2001, 293, 2227.Google Scholar
[4] Huang, Y., Duan, X., Wei, Q., Lieber, C. M., Science 2001, 291, 630.Google Scholar
[5] Li, Z., Chen, X., Kamins, T. I., Nauka, K., Williams, R. S., Nano Lett. 2004, 4, 245.Google Scholar
[6] Yun, M., Myung, N., Vasquez, R., Lee, C., Menke, E., Penner, R. M., Nano Lett. 2004, 4, 419.Google Scholar
[7] Ramanathan, K., Bangar, M. A., Yun, M., Chen, W., Mulchandani, A., Myung, N., Nano Lett. 2004, 4, 1237.Google Scholar
[8] Tengvall, P., Titanium-Hydrogen Peroxide Interaction with Reference to Biomaterial Applications, PhD Thesis, Department of Physics and Measurement Technology, Linköping University, Sweden 1989, Ch. 2.Google Scholar
[9] Wu, J. M.; Hayakawa, S.; Tsuru, K., Osaka, A. Scripta Mater. 2002, 46, 101.Google Scholar
[10] Ranade, M. R., Navrotsky, A., Zhang, H. Z., Banfield, J. F., Elder, S. H., Zaban, A., Borse, P. H., Kulkarni, S. K., Doran, G. S., Whitfield, H. J., P. Natl. Acad. Sci. USA 2002, 99, 6476.Google Scholar
[11] Moulder, J. F., Stickle, W. F., Sobol, P. E., Bomben, K. D., Handbook of X Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, Physical Electronics Inc., Minnesota, 1995.Google Scholar
[12] Choudhury, T., Saied, S. O., Sullivan, J. L., Abbott, A. M., J. Phys. D. Appl. Phys. 1989, 22, 1185.Google Scholar
[13] Gonbeau, D., Guimon, C., Pfisterguillouzo, G., Levasseur, A., Meunier, G., and Dormoy, R., Surf. Sci. 1991, 254, 81.Google Scholar
[14] Sharma, R. K., Bhatnagar, M. C., Sensor Actuat. B – Chem. 1999, 56, 215.Google Scholar
[15] Gao, L., Li, Q., Song, Z., Wang, J., Sensor Actuat. B –Chem 2000, 71, 179.Google Scholar
[16] Ruiz, A., Calleja, A., Espiell, F., Cornet, A., Morante, J. R., IEEE Sensors J., 2003, 3, 189.Google Scholar
[17] Zuruzi, A., S., , MacDonald, N. C., Adv. Func. Mater., In press.Google Scholar