Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-18T20:26:27.971Z Has data issue: false hasContentIssue false

Taxon distributions and the tetrapod track record

Published online by Cambridge University Press:  08 April 2016

Matthew T. Carrano
Affiliation:
Department of Anatomical Sciences, Health Sciences Center T-8, State University of New York at Stony Brook, Stony Brook, New York 11794-8081. E-mail: mcarrano@mail.som.sunysb.edu
Jeffrey A. Wilson
Affiliation:
Museum of Paleontology, University of Michigan, 1109 Geddes Road, Ann Arbor, Michigan 48109-1079. E-mail: wilsonja@umich.edu

Abstract

Vertebrate tracks are a unique, abundant source of fossil data that supplements the skeletal record in many ways. However, the utility of ichnofossil data depends on how specifically the authors of tracks can be identified. Despite this fact, there is little consensus about how to identify potential trackmakers, and existing methods differ in their bases, assumptions, and corresponding implications.

In this paper we support the proposal that trackmakers should be identified primarily by skeletal structures that are both preserved in the ichnofossils and synapomorphies of some body-fossil clade. This synapomorphy-based technique enables certain taxa to be positively identified as candidate trackmakers and others to be excluded from consideration. In addition, the diagnostic level of the synapomorphy (i.e., to a higher or lower level) corresponds to that of the trackmaker. Additional features, such as body size and provenance, can be used in association with synapomorphies as additional differentiae of trackmaker identity.

Trackway analyses are dependent on the level of trackmaker diagnosis, but not all analyses require the same diagnostic specificity. Palichnostratigraphic correlations to the stage level are shown to require at least a genus-level identification of a trackmaker, whereas studies of vertebrate distributions (i.e., origins, extinctions, ranges) accommodate much coarser designations. Anachronistic occurrences of trace and body fossils result in range extensions for either the skeletal taxon or the feature in question. For example, the temporal distribution of theropods can be extended on the basis of the footprint record, resulting in an earlier estimated divergence time for Dinosauria.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alexander, R. M. 1976. Estimates of the speeds of dinosaurs. Nature 261:129130.Google Scholar
Arcucci, A., Forster, C., May, C., Abdala, F., and Marsicano, C. 1998. Una nueva icnofauna de la Formación Los Rastros, Triásico Medio, en la Quebrada de Ischichuca Chica (Provincia de La Rioja, Argentina). Acta Geologica Lilloana 18:152.Google Scholar
Baird, D. 1964. Dockum (Late Triassic) reptile footprints from New Mexico. Journal of Paleontology 38:118125.Google Scholar
Baird, D. 1980. A prosauropod dinosaur trackway from the Navajo Sandstone (Lower Jurassic) of Arizona. Pp. 219230in Jacobs, L. L., ed. Aspects of vertebrate history: essays in honor of Edwin Harris Colbert. Museum of Northern Arizona Press, Flagstaff.Google Scholar
Benton, M. J. 1994. Late Triassic to Middle Jurassic extinctions among continental tetrapods: testing the pattern. Pp. 366397in Fraser, and Sues, 1994.Google Scholar
Benton, M. J., Wills, M. A., and Hitchin, R. 2000. Quality of the fossil record through time. Nature 403:534537.Google Scholar
Bird, R. T. 1944. Did Brontosaurus ever walk on land? Natural History 53:6067.Google Scholar
Boucot, A. J. 1990. Evolutionary paleobiology of behavior and coevolution. Elsevier, Amsterdam.Google Scholar
Buffetaut, E., Suteethorn, V., Cuny, G., Tong, H., Le Loeuff, J., Khansubha, S., and Jongautchariyakul, S. 2000. The earliest known sauropod dinosaur. Nature 407:7274.Google Scholar
Chen, P.-J., Dong, Z.-M., and Zhen, S.-n. 1998. An exceptionally well-preserved theropod dinosaur from the Yixian Formation of China. Nature 391:147152.Google Scholar
Collins, A. G., Lipps, J. H., and Valentine, J. W. 2000. Modern mucociliary creeping trails and the bodyplans of Neoproterozoic trace-makers. Paleobiology 26:4755.Google Scholar
Coria, R. A., and Salgado, L. 1995. A new giant carnivorous dinosaur from the Cretaceous of Patagonia. Nature 377:224226.CrossRefGoogle Scholar
Courel, L., and Demathieu, G. 1976. Une ichnofaune reptilienne remarquable dans le Grès Triassique de Largentière (Árdéche, France). Palaeontographica, Abteilung A 151:194216.Google Scholar
Currie, P. J., and Zhao, X.-J. 1994. A new carnosaur (Dinosauria, Theropoda) from the Jurassic of Xinjiang, People's Republic of China. Canadian Journal of Earth Science 30:20372081.Google Scholar
Demathieu, G. R. 1990. Appearance of the first dinosaur tracks in the French Middle Triassic and their probable significance. Pp. 201207in Gillette, D. D. and Lockley, M. G., eds. Dinosaur tracks and traces. Cambridge University Press, Cambridge.Google Scholar
Dodson, P., and Farlow, J. O. 1997. The forelimb carriage of ceratopsid dinosaurs. Pp. 393398in Wolberg, D. L., Gittis, K., Miller, S., Carey, L., and Raynor, A., eds. DinoFest International: proceedings of a symposium held at the Academy of Natural Sciences, Philadelphia. Academy of Natural Sciences, Philadelphia.Google Scholar
Farlow, J. O. 1981. Estimates of dinosaur speeds from a new trackway site in Texas. Nature 294:747748.Google Scholar
Farlow, J. O. 1987. A guide to Lower Cretaceous dinosaur footprints and tracksites of the Paluxy River Valley, Sovell County, Texas. South-central Section, Geological Society of America, Field Trip Guidebook. Baylor University, Waco, Tex.Google Scholar
Farlow, J. O.In press. Toebone proportions of the “prodigious birds”: implications for dinosaur ichnology? In Wolberg, D. L., Gittis, K., Miller, S., Carey, L., and Raynor, A., eds. DinoFest International: proceedings of a symposium held at the Academy of Natural Sciences, Philadelphia. Academy of Natural Sciences, Philadelphia.Google Scholar
Farlow, J. O., and Chapman, R. E. 1997. The scientific study of dinosaur footprints. Pp. 519553in Farlow, J. O. and Brett-Surman, M., eds. The complete dinosaur. Indiana University Press, Bloomington.Google Scholar
Farlow, J. O., and Pianka, E. R. 2000. Body form and trackway pattern in Australian desert monitors (Squamata: Varanidae): comparing zoological and ichnological diversity. Palaios 15:235247.Google Scholar
Farlow, J. O., Gatesy, S. M., Holtz, T. R. Jr., Hutchinson, J. R., and Robinson, J. M. 2000. Theropod locomotion. American Zoologist 40:640663.Google Scholar
Farris, J. S. 1979. On the naturalness of phylogenetic classification. Systematic Zoology 28:200214.Google Scholar
Fisher, D. C. 1994. Stratigraphic parsimony; Pp. 124129in Maddison, W. P. and Maddison, D. R.MacClade: analysis of phylogeny and character evolution. Sinauer, Sunderland, Massachusetts.Google Scholar
Flynn, J. J., Parrish, J. M., Rakotosamimanana, B., Simpson, W. F., Whatley, R. L., and Wyss, A. R. 1999. A Triassic fauna from Madagascar, including early dinosaurs. Science 286:763765.Google Scholar
Forster, C. A., Arcucci, A. B., Marsicano, C. A., Abdala, F., and May, C. L. 1995. New vertebrate material from the Los Rastros Formation (Middle Triassic), La Rioja province, northwestern Argentina. Journal of Vertebrate Paleontology 15:29A.Google Scholar
Fox, D. L., Fisher, D. C., and Leighton, L. R. 1999. Reconstructing phylogeny with and without temporal data. Science 284:18161819.Google Scholar
Fraser, N. C., and Sues, H.-D., eds. 1994. In the shadow of the dinosaurs: early Mesozoic tetrapods. Cambridge University Press, Cambridge.Google Scholar
Gatesy, S. M., Middleton, K. M., Jenkins, F. A. Jr., and Shubin, N. H. 1999. Three-dimensional preservation of foot movements in Triassic theropod dinosaurs. Nature 399:141144.Google Scholar
Gauthier, J. A. 1986. Saurischian monophyly and the origin of birds. Memoirs of the California Academy of Sciences 8:155.Google Scholar
Gierlinski, G. 1996. Feather-like impressions in a theropod resting trace from the Lower Jurassic of Massachusetts. In Morales, M., ed. The continental Jurassic. Museum of Northern Arizona Bulletin 40:179184.Google Scholar
Glaessner, M. F. 1969. Decapoda. Pp. 400573in Brooks, H. K. et al. Arthropoda 4, 2. Part R ofMoore, R. C. and Teichert, C., eds. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo. and University of Kansas, Lawrence.Google Scholar
Harris, J. D. 1998. A reanalysis of Acrocanthosaurus atokensis, its phylogenetic status, and paleobiogeographic implications, based on a new specimen from Texas. Bulletin of the New Mexico Museum of Natural History and Science 13:175.Google Scholar
Haubold, H. 1974. Die Fossilen Saurierfährten. A. Ziemsen, Wittenberg Lutherstadt.Google Scholar
Haubold, H. 1983. Archosaur evidence in the Buntsandstein (Lower Triassic). Acta Palaeontologica Polonica 28:123132.Google Scholar
Haubold, H., and Katzung, G. 1980. A lithostratigraphic standard for Permosilesian of the middle and southeastern Thuringian forest. Zeitschrift für Angewandte Geology 26:1019.Google Scholar
Hitchcock, E. 1836. Ornithichnology—description of the foot marks of birds (Ornithichnites) on New Red Sandstone in Massachusetts. American Journal of Science 29:307340.Google Scholar
Holtz, T. R. 1994. The phylogenetic position of the Tyrannosauridae: implications for theropod systematics. Journal of Paleontology 68:11001117.Google Scholar
Hunt, A. P., and Lucas, S. G. 1994. Ornithischian dinosaurs from the Upper Triassic of the United States. Pp. 227241in Fraser, and Sues, 1994.Google Scholar
Ji, Q., Currie, P. J., Norell, M. A., and Ji, S.-A. 1998. Two feathered dinosaurs from northeastern China. Nature 393:753761.Google Scholar
Leich, H. 1965. Ein neue Lebensspur von Mesolimulus walchi und ihre Deutung. Aufschluss 15:576.Google Scholar
Lockley, M. G. 1986. Dinosaur tracks symposium signals a renaissance in vertebrate ichnology. Paleobiology 13:246252.Google Scholar
Lockley, M. G. 1987. Dinosaur trackways. Pp. 8095in Czerkas, S. J. and Olson, E. C., eds. Dinosaurs past and present, Vol. I. University of Washington Press, Seattle.Google Scholar
Lockley, M. G. 1991. Tracking dinosaurs: a new look at an ancient world. Cambridge University Press, Cambridge.Google Scholar
Lockley, M. G. 1998. The vertebrate track record. Nature 396:429432.Google Scholar
Lockley, M. G., and Hunt, A. P. 1994. A track of the giant theropod dinosaur Tyrannosaurus from close to the Cretaceous/Tertiary boundary, northern New Mexico. Ichnos 3:213218.CrossRefGoogle Scholar
Lockley, M. G., and Hunt, A. P. 1995. Ceratopsian tracks and associated ichnofauna from the Laramie Formation (Upper Cretaceous: Maastrichtian) of Colorado. Journal of Vertebrate Paleontology 15:592614.Google Scholar
Lockley, M. G., and Pittman, J. G. 1989. The megatracksite phenomenon: implications for paleoecology, evolution and stratigraphy. Journal of Vertebrate Paleontology 9:30A.Google Scholar
Lockley, M. G., Houck, K., and Prince, N. K. 1986. North America's largest dinosaur tracksite: implications for Morrison Formation paleoecology. Geological Society of America Bulletin 97:11631176.Google Scholar
Lull, R. S. 1915. Triassic life of the Connecticut Valley. State of Connecticut State Geological and Natural History Survey Bulletin 24:1285.Google Scholar
Lull, R. S. 1953. Triassic life of the Connecticut Valley (revised). State of Connecticut State Geological and Natural History Survey Bulletin 81:1336.Google Scholar
Marshall, C. R. 1990. Confidence intervals on stratigraphic ranges. Paleobiology 16:110.Google Scholar
Marshall, C. R. 1994. Confidence intervals on stratigraphic ranges: partial relaxation of the assumption of randomly distributed fossil horizons. Paleobiology 20:459469.CrossRefGoogle Scholar
Miller, L. 1929. A new cormorant from the Miocene of California. Condor 31:167172.Google Scholar
Norell, M. A., and Novacek, M. J. 1992. Congruence between superpositional and phylogenetic patterns: comparing cladistic patterns with fossil records. Cladistics 8:319337.Google Scholar
Olsen, P. E. 1995. A new approach for recognizing track makers. Geological Society of America Abstracts with Programs 27:72.Google Scholar
Olsen, P. E., and Johannson, A. 1994. Field guide to Late Triassic tetrapod sites in Virginia and North Carolina. Pp. 408430in Fraser, and Sues, 1994.Google Scholar
Olsen, P. E., Smith, J. B., and McDonald, N. G. 1998. Type material of the type species of the classic theropod footprint genera Eubrontes, Anchisauripus, and Grallator (Early Jurassic, Hartford and Deerfield Basins, Connecticut and Massachusetts, U. S. A.). Journal of Vertebrate Paleontology 18:586601.Google Scholar
Osborn, H. F. 1912. Integument of the iguanodont dinosaur Trachodon. Memoirs of the American Museum of Natural History 1:3354.Google Scholar
Ostrom, J. H. 1972. Were some dinosaurs gregarious? Palaeogeography, Palaeoclimatology, Palaeoecology 11:287301.Google Scholar
Patterson, C. 1982. Morphological characters and homology. Pp. 2174in Joysey, K. A. and Friday, A. E., eds. Problems of phylogenetic reconstruction. Academic Press, London.Google Scholar
Pickerill, R. K., and Forbes, W. H. 1978. A trace fossil preserving its producer (Trentonia shegiriana) from the Trenton Limestone of the Quebec area. Canadian Journal of Earth Science 15:659664.Google Scholar
Raath, M. 1972. Fossil vertebrate studies in Rhodesia: a new dinosaur (Reptilia, Saurischia) from the near the Trias-Jurassic boundary. Arnoldia 30:137.Google Scholar
Raup, D. M. 1972. Taxonomic diversity throughout the Phanerozoic. Science 177:10651071.Google Scholar
Rogers, R. R., Swisher, C. C. III, Sereno, P. C., Monetta, A. M., Forster, C. A., and Martinez, R. N. 1993. The Ischigualasto tetrapod assemblage (Late Triassic, Argentina) and 40Ar/39Ar dating of dinosaur origins. Science 260:794797.Google Scholar
Sarjeant, W. J. 1990. A name for the trace of an act: approaches to the nomenclature and classification of fossil vertebrate footprints. Pp. 299307in Carpenter, K. and Currie, P. J., eds. Dinosaur systematics: approaches and perspectives. Cambridge University Press, Cambridge.Google Scholar
Sereno, P. C. 1986. Phylogeny of the bird-hipped dinosaurs (Order Ornithischia). National Geographic Research 2:234256.Google Scholar
Sereno, P. C. 1999. The evolution of dinosaurs. Science 284:21372147.CrossRefGoogle ScholarPubMed
Sereno, P. C., Dutheil, D. B., Iarochene, M., Larsson, H. C. E., Lyon, G. H., Magwene, P. M., Sidor, C. A., Varricchio, D. J., and Wilson, J. A. 1996. Predatory dinosaurs from the Sahara and Late Cretaceous faunal differentiation. Science 272:986991.Google Scholar
Sereno, P. C., Beck, A. L., Dutheil, D. B., Gado, B., Larsson, H. C. E., Lyon, G. H., Marcot, J. D., Rauhut, O. W. M., Sadleir, R. W., Sidor, C. A., Varricchio, D. J., Wilson, G. P., and Wilson, J. A. 1998. A long-snouted predatory dinosaur from Africa and the evolution of spinosaurids. Science 282:12981302.Google Scholar
Signor, P. W. I., and Lipps, J. H. 1982. Sampling bias, gradual extinction patterns and catastrophes in the fossil record. In Silver, L. T. and Schultz, P. H., eds. Geological implications of impacts of large asteroids and comets on the Earth. Geological Society of America Special Paper 90:291296.Google Scholar
Stovall, J. W., and Langston, W. Jr. 1950. Acrocanthosaurus atokensis, a new genus and species of Lower Cretaceous Theropoda from Oklahoma. American Midland Naturalist 43:696728.Google Scholar
Stromer, E. 1932. Ergebnisse der Forschungsreisen Prof. E. Stromers in den Wüsten Aegyptens. 11. Ein Skelett-Rest von Carcharodontosaurus nov. gen. Abhandlungen der Bayerischen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftlichen 9:132.Google Scholar
Thulborn, R. A. 1982. Speeds and gaits of dinosaurs. Palaeogeography, Palaeoclimatology, Palaeoecology 38:227256.Google Scholar
Thulborn, R. A. 1990. Dinosaur tracks. Chapman and Hall, London.Google Scholar
Wagner, P. J. 1995. Stratigraphic tests of cladistic hypotheses. Paleobiology 21:153178.Google Scholar
Weishampel, D. B. 1990. Dinosaur distributions. Pp. 63139in Weishampel, D. B., Dodson, P., and Osmólska, H., eds. The Dinosauria. University of California Press, Berkeley.Google Scholar
Wilkinson, M. 1995. Coping with abundant missing entries in phylogenetic inference using parsimony. Systematic Biology 44:501514.CrossRefGoogle Scholar
Wilson, J. A., and Carrano, M. T. 1999. Titanosaurs and the origin of “wide-gauge” trackways: a biomechanical and systematic perspective on sauropod locomotion. Paleobiology 25:252267.Google Scholar
Wilson, J. A., and Sereno, P. C. 1998. Early evolution and higher-level phylogeny of sauropod dinosaurs. Society of Vertebrate Paleontology Memoir 5. Journal of Vertebrate Paleontology 18(Suppl.):168.Google Scholar