Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-20T02:36:17.768Z Has data issue: false hasContentIssue false

Low Frequency Noise In n-Type Gallium Nitride

Published online by Cambridge University Press:  10 February 2011

N. Dyakonova
Affiliation:
A.F. Ioffe Physical-Technical Institute, 194021, St. Petersburg, Russia.
M. Levinshtein
Affiliation:
A.F. Ioffe Physical-Technical Institute, 194021, St. Petersburg, Russia.
S. Contreras
Affiliation:
G.E.S., UMR-CNRS 5650, cc 074, Universite Montpellier II, Montpellier, France.
W. Knap
Affiliation:
G.E.S., UMR-CNRS 5650, cc 074, Universite Montpellier II, Montpellier, France.
B. Beaumont
Affiliation:
CRHEA, rue Bernard Gregory, F-06560 Valbonne, France.
P. Gibart
Affiliation:
CRHEA, rue Bernard Gregory, F-06560 Valbonne, France.
Get access

Abstract

Low frequency noise has been investigated in hexagonal n-type GaN with equilibrium electron concentration n ∼ 1017 cm−3 at T=300 K. The frequency and temperature dependencies of the spectral density of the current noise, SI, have been studied in the frequency range f from 20 Hz to 20 kHz. Over the whole temperature range from T=80K to 400K the SI(f) dependence is very close to 1/f. The value of the Hooge constant, α, is very large: α ∼ 5 – 7 and is found to be temperature independent. The effects of illumination on the low frequency noise in GaN are studied for the first time. The noise is unaffected by illumination with photon energy Eph < Eg, while band-to band illumination (EphEg ) influences the low frequency noise, increasing the noise at higher temperatures, and decreasing it at lower temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pearton, S.J., Kuo, C., MRS Bulletin, February, 1997, pp. 1719.Google Scholar
2. Nakamura, S., MRS Bulletin, February, 1997, pp. 2935.Google Scholar
3. Khan, M.A., Shur, M.S., Kusnia, J.N., Burn, J., Shaff, W., Appl. Phys. Lett. 66, pp. 10831085 (1995).Google Scholar
4. Vandamme, L.K.J., Oosterhoff, S., Jour. Appl. Phys., 59, pp. 31693274 (1986).Google Scholar
5. Dyakonova, N.V., Levinshtein, M.E., Rumyantzev, S.L, Sov. Phys. Semicond., 25, pp. 217218 (1991).Google Scholar
6. Vandamme, L.K.J., IEEE Trans. on Electron. Dev., 41, pp. 21762187 (1994).Google Scholar
7. Ursutiu, D., Jones, B.K., Sem.Sci.Techn., 11, pp. 11331136 (1996).Google Scholar
8. Black, R.D., Weissman, M.B., Restle, P.J., Joum. Appl. Phys., 53, pp. 62806284 (1982).Google Scholar
9. Voss, R.F., Clark, J., Phys.Rev. B 13, pp. 556573 (1976).Google Scholar
10. Hooge, F.N., Kleinpenning, T.G.M., Vandamme, L.K.J., Rep. Progr. Phys., 44, pp. 479532 (1981).Google Scholar
11. Hooge, F.N. and Tacano, M., Physica B, 190, pp. 145149 (1993).Google Scholar
12. Tehrani, S., Hench, L.L., Van Vliet, C.M., Bosman, G.S., J. Appl. Phys., 58, pp. 15711577 (1985).Google Scholar
13. Palmour, J.V., Levinshtein, M.E., Rumyantsev, S.L., and Simin, G.S., Appl. Phys.Lett., 68, pp. 2669–2271 (1996).Google Scholar
14. Casey, H.C., Saell, D.D., Weight, K.W., J. Appl. Phys., 46, pp. 250257 (1975).Google Scholar
15. Ambacher, O., Reiger, V., Stutzman, M., Absract Book of Topical Workshop on 111-V Nitrides, Nagoya, Sept., 1995, p.F5.Google Scholar
16. Dyakonova, N.V., Levinshtein, M.E., Soy. Phys. Semicond., 23, pp. 743746 (1989).Google Scholar
17. Dyakonova, N.V., Soy. Phys. Semicond.,.25, pp, 219220 (1991).Google Scholar