Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-25T00:30:35.116Z Has data issue: false hasContentIssue false

Modeling Analysis of Free-Spreading Sublimation Growth of SiC Crystals

Published online by Cambridge University Press:  11 February 2011

M. V. Bogdanov
Affiliation:
Soft-Impact Ltd., P.O. Box 33, 194156 St. Petersburg, Russia
S. E. Demina
Affiliation:
Soft-Impact Ltd., P.O. Box 33, 194156 St. Petersburg, Russia
S. Yu Karpov
Affiliation:
Soft-Impact Ltd., P.O. Box 33, 194156 St. Petersburg, Russia
A. V. Kulik
Affiliation:
Soft-Impact Ltd., P.O. Box 33, 194156 St. Petersburg, Russia
D. Kh Ofengeim
Affiliation:
Soft-Impact Ltd., P.O. Box 33, 194156 St. Petersburg, Russia
M. S. Ramm
Affiliation:
Soft-Impact Ltd., P.O. Box 33, 194156 St. Petersburg, Russia
E. N. Mokhov
Affiliation:
Crystal Growth Science and Technology Laboratory, St. Petersburg, Russia
A. D. Roenkov
Affiliation:
Crystal Growth Science and Technology Laboratory, St. Petersburg, Russia
Yu. A. Vodakov
Affiliation:
Crystal Growth Science and Technology Laboratory, St. Petersburg, Russia
Yu. A. Makarov
Affiliation:
STR, Inc., P.O. Box 70604, Richmond, VA 23255–0604, U.S.A
H. Helava
Affiliation:
The Fox Group, Inc. 1154 Stealth St., Livermore, CA 94550, U.S.A.
Get access

Abstract

Recently, an advanced technique for growing free-spreading SiC bulk crystals by sublimation has been demonstrated. This method was used to grow 6H- and 4H-SiC boules free of polycrystalline deposits on the crystal periphery, up to 35 mm in diameter with the micropipe density less than 20 cm-2 and the dislocation density about 102-103 cm-2. In this paper, we report on the numerical modeling of free-spreading crystal growth. We consider the global heat transfer in an inductively heated growth system, species transport in the growth cell and in the powder charge, and thermoelastic stress, focusing on the crystallization front dynamics, poly-SiC deposition, and powder source evolution. Special attention was given to the validation of the simulations. The computed thermal field and evolution of the powder and crystal shape were found to agree qualitatively with observations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vodakov, Yu.A., Ramm, M.G., Mokhov, E.N., Roenkov, A.D., Makarov, Yu.N., Karpov, S. Yu., Ramm, M.S., and Helava, H.: US Patent 6,428,621 (2002).Google Scholar
2. Mokhov, E.N., Ramm, M.G., Ramm, M.S., Roenkov, A.D., Vodakov, Yu.A., Karpov, S.Yu., Makarov, Yu.A., and Helava, H., to be published in Proc. ECSCRM2002 (Mat. Sci. Forum).Google Scholar
3. Bogdanov, M.V., Galyukov, A.O., Karpov, S. Yu., Kochuguev, S.K., Ofengeim, D.Kh., Tsiryulnikov, A.V., Ramm, M.S., Zhmakin, A.I., and Makarov, Yu.N., J. Cryst. Growth 225, 307 (2001).Google Scholar
4. Vodakov, Yu.A., Roenkov, A.D., Ramm, M.G., Mokhov, E.N., and Makarov, Yu.N., Phys. Stat. Sol. (b) 202, 177 (1997).Google Scholar
5. Karpov, D.S., Bord, O.V., Karpov, S. Yu., Zhmakin, A.I., Ramm, M.S., and Makarov, Yu.N., Mat. Sci. Forum. 353–356, 37 (2001).Google Scholar
6. Wellmann, P. J., Bickermann, M., Hoffmann, D., Kadinski, L., Selder, M., Straubinger, T. L., and Winnacker, A., J. Cryst. Growth 216, 263 (2000).Google Scholar
7. Jordan, A.S., von Neida, A.R., and Caruso, R., J. Cryst. Growth 70, 555 (1984).Google Scholar