Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T21:31:58.451Z Has data issue: false hasContentIssue false

Fabrication of a Regular Array of Atomic Silicon Wires on Silicon

Published online by Cambridge University Press:  01 February 2011

Takeharu Sekiguchi
Affiliation:
Department of Applied Physics and CREST-JST, Keio University, Yokohama 223–8522, Japan
Shunji Yoshida
Affiliation:
Department of Applied Physics and CREST-JST, Keio University, Yokohama 223–8522, Japan
Kohei M. Itoh
Affiliation:
Department of Applied Physics and CREST-JST, Keio University, Yokohama 223–8522, Japan
Get access

Abstract

We report on the experimental realization of atomically straight, single wires of Si atoms on a Si surface. The Si wires were formed by solid-source molecular beam epitaxy (MBE) on a specific substrate prepared by a thermal treatment of a vicinal Si(111) wafer. The structures of the substrate and the atomic wire were investigated by scanning tunneling microscopy (STM). The substrate consists of an array of atomically straight step edges with a uniform structure serendipitously suitable for self-assembly of the atomic wires. The isotopic version of this structure —single lines of 29Si on 28Si— is expected to be the most basic building block for the all-silicon quantum computer [1], which utilizes the nuclear spins of individual 29Si isotopes as quantum bits (qubits).

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ladd, T. D., Goldman, J. R., Yamaguchi, F., Yamamoto, Y., Abe, E., and Itoh, K. M., Phys. Rev. Lett. 89, 017901 (2002).Google Scholar
2. Ball, P., news@nature.com http://www.nature.com/news/2002/020617/full/020617–3.html, doi:10.1038/news020617–3 (2002).Google Scholar
3. Eigler, D. M. and Schweizer, E. K., Nature 344, 524 (1990).Google Scholar
4. Stroscio, J. A. and Eigler, D. M., Science 254, 1319 (1991).Google Scholar
5. Viernow, J., Lin, J.-L., Petrovykh, D. Y., Leibsle, F. M., Men, F. K., and Himpsel, F. J., Appl. Phys. Lett. 72, 948 (1998).Google Scholar
6. Lin, J.-L., Petrovykh, D. Y., Viernow, J., Men, F. K., Seo, D. J., and Himpsel, F. J., J. Appl. Phys. 84, 255 (1998).Google Scholar
7. Takayanagi, K., Tanishiro, Y., Takahashi, S., and Takahashi, M., Surf. Sci. 164, 367 (1985).Google Scholar
8. Himpsel, F. J., Kirakosian, A., Crain, J. N., Lin, J.-L., and Petrovykh, D. Y., Solid State Commun. 117, 149 (2001).Google Scholar
9. Yoshida, S., Sekiguchi, T., and Itoh, K. M., Mater. Res. Soc. Symp. Proc. 832, F10.17 (2005).Google Scholar
10. Hoshino, T., Kokubun, K., Kumamoto, K., Ishimaru, T., and Ohdomari, I., Jpn. J. Apl. Phys. 34, 3346 (1995).Google Scholar
11. Shimada, W. and Tochihara, H., Surf. Sci. 311, 107 (1994).Google Scholar
12. Ikeda, J., Shimada, W., Mizuno, S., and Tochihara, H., J. Surf. Sci. Soc. Jpn. 22, 382 (2001).Google Scholar
13. Rugar, D., Budakian, R., Mamin, H. J., and Chui, B. W., Nature 430, 329 (2004).Google Scholar
14. Fu, K.-M. C., Ladd, T. D., Santori, C., and Yamamoto, Y., Phys. Rev. B 69, 125306 (2004).Google Scholar
15. Abe, E., Itoh, K. M., Isoya, J., and Yamasaki, S., Phys. Rev. B 70, 033204 (2004).Google Scholar