Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T12:52:05.331Z Has data issue: false hasContentIssue false

Boron Doping of Microcrystalline and Nanocrystalline Diamond Films: Where is the Boron Going?

Published online by Cambridge University Press:  01 February 2011

Paul William May
Affiliation:
paul.may@bris.ac.uk, University of Bristol, School of Chemistry, Cantock's Close, Bristol, BS8 1TS, United Kingdom, +44 (0)117 9289927, +44 (0)117 9251295
William J Ludlow
Affiliation:
w.j.ludlow@bris.ac.uk, University of Bristol, School of Chemistry, Cantock's Close, Bristol, BS8 1TS, United Kingdom
Matthew Hannaway
Affiliation:
m.hannaway@bris.ac.uk, University of Bristol, School of Chemistry, Cantock's Close, Bristol, BS8 1TS, United Kingdom
James A Smith
Affiliation:
james.smith@bris.ac.uk, University of Bristol, School of Chemistry, Cantock's Close, Bristol, BS8 1TS, United Kingdom
Keith N Rosser
Affiliation:
Keith.Rosser@bristol.ac.uk, University of Bristol, School of Chemistry, Cantock's Close, Bristol, BS8 1TS, United Kingdom
Peter J Heard
Affiliation:
Peter.Heard@bristol.ac.uk, University of Bristol, Interface Analysis Centre, 121 St. Michael's Hill, Bristol, BS2 8BS, United Kingdom
Get access

Abstract

We present data showing how the electrical conductivity and Raman spectra of boron doped ‘cauliflower’-type nanocrystalline (c-NCD) CVD diamond films vary as a function of B content. The conductivity is roughly linear as a function of B content between an onset threshold of ∼5×1020 cm−3 up to ∼6×1021 cm−3, with the higher concentrations giving near metallic conductivity values. The onset threshold may be due to compensating donors due to the large number of impurities and defects in these films. The position of the Lorentzian contribution to the 500 cm−1 Raman feature was used to estimate the B content and compared to the value measured using SIMS. We found that the Raman method overestimated the concentration of B by a factor of ∼5 for these c-NCD films. The shortfall may be explained if only a small fraction of the B found in the small-grained films is being incorporated into substitutional sites. We conclude that in diamond films with a high concentration of grain boundaries, the majority of the B (80% in some cases) must be present at or in the grain boundaries.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kalish, R., Carbon, 37 (1999) 781.10.1016/S0008-6223(98)00270-XGoogle Scholar
2. Massarani, B., Bourgoin, J.C., and Chrenko, R.M., Phys. Rev. B 17, (1978) 1758.Google Scholar
3. Nishimura, K., Das, K., and Glass, J. T., J. Appl. Phys. 69, (1991) 3142.10.1063/1.348582Google Scholar
4. Pleskov, Yu. V., Russ. J. Electrochem. 38 (2002) 1275.10.1023/A:1021651920042Google Scholar
5. Willander, M., Friesel, M., Wahab, Q.-ul. and Straumal, B., J. Mater. Sci: Maters in Electron. 17 (2006) 1.Google Scholar
6. Dreifus, D.L., Collins, A., Humphreys, T., Das, K., Pehrsson, P.E., eds, Diamond for Electronic Applications, MRS Symp. Proc. Vol 416 (Materials Research Society, Pittsburgh, 1996).Google Scholar
7. Barnard, A.S. and Strernberg, M., J. Phys. Chem. B 110 (2006) 19307.Google Scholar
8. May, P.W., Chemical vapour deposition – A route to microcrystalline, nanocrystalline, ultrananocrystalline and single crystal diamond films, Chapter in: Carbon Based Nanomaterials, Öchsner, A., Ahmed, W., Eds. (Trans Tech, Switzerland, 2007), in press.Google Scholar
9. Kohn, E., Gluche, P., Adamschik, M., Diamond Relat. Maters. 8, (1999) 934.10.1016/S0925-9635(98)00294-5Google Scholar
10. Guillen, F.J.H, Janischowsky, K., Kusterer, J., Ebert, W., Kohn, E., Diamond Relat. Maters. 14, (2005) 411.Google Scholar
11. Gruen, D.M., Shenderova, O.A., Vul', A.Ya. (Eds.), Synthesis, Properties and Applications of Ultrananocrystalline Diamond, Springer, 2005 (NATO Science Series part II, vol. 192).Google Scholar
12. May, P.W. and Hannaway, M., Mat. Res. Symp. Proc. PV–956 (2006) 0956–J09.Google Scholar
13. Prawer, S., Nemanich, R.J., Phil. Trans. R. Soc. Lond. A 362 (2004) 2537.10.1098/rsta.2004.1451Google Scholar
14. Ager, J.W. III, Walukiewicz, W., McCluskey, M., Plano, M.A., Landstrass, M.I., Appl. Phys. Lett. 66, (1995) 616.10.1063/1.114031Google Scholar
15. Pruvost, F., Bustarret, E., Deneuville, A., Diamond Relat. Mater. 9, (2000) 295.Google Scholar
16. Wang, Y.G., Lau, S.P., Tay, B.K., Zhang, X.H., J. Appl. Phys., 92 (2002) 7253.Google Scholar
17. Gheeraert, E., Gonon, P., Deneuville, A., Abello, L., Lucazeau, G., Diamond Relat. Mater. 2 (1993) 742.Google Scholar
18. Gonon, P., Gheeraert, E., Deneuville, A., Abello, L., Lucazeau, G., J. Appl. Phys. 78 (1995) 7059.10.1063/1.360410Google Scholar
19. Locher, R., Wagner, J., Fuchs, F., Maier, M., Gonon, P., Koidl, P., Diamond Relat. Mater. 4 (1995) 678.Google Scholar
20. Bernard, M., Deneuville, A. Muret, P., Diamond Relat. Mater. 13, (2004), 282.Google Scholar
21. Bernard, M., Baron, C., Deneuville, A. Diamond Relat. Mater. 13, (2004), 896.Google Scholar
22. Goss, J.P. and Briddon, P.R., Phys. Rev. B 73, (2006) 085204.10.1103/PhysRevB.73.085204Google Scholar
23. Comerford, D.W., Cheesman, A., Carpenter, T.P.F, Davies, D.M.E, Fox, N.A., Sage, R.S., Smith, J.A., Ashfold, M.N.R, Mankelevich, Yu. A., J. Phys. Chem. A 110, (2006) 2868.10.1021/jp053455pGoogle Scholar
24. May, P.W., Ludlow, W.J, Hannaway, M., Smith, J.A., Rosser, K.N., Heard, P.J., Chem. Phys. Letts. 446 (2007) 103.Google Scholar
25. May, P.W., Ludlow, W.J, Hannaway, M., Smith, J.A., Rosser, K.N., Heard, P.J., submitted to Diamond Relat. Mater. (2007).Google Scholar