Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T10:02:49.423Z Has data issue: false hasContentIssue false

Response of Nebraska Kochia (Kochia scoparia) Accessions to Dicamba

Published online by Cambridge University Press:  20 January 2017

Roberto J. Crespo*
Affiliation:
Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE 68583
Mark L. Bernards
Affiliation:
Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE 68583
Gustavo M. Sbatella
Affiliation:
Central Oregon Agricultural Research Center, Oregon State University, Madras, OR 97741
Greg R. Kruger
Affiliation:
West Central Research and Extension Center, University of Nebraska–Lincoln, North Platte, NE 69101
Don J. Lee
Affiliation:
Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE 68583
Robert G. Wilson
Affiliation:
Panhandle Research and Extension Center, University of Nebraska–Lincoln, Scottsbluff, NE 69361
*
Corresponding author's E-mail: rojacre@yahoo.com.ar.

Abstract

Kochia is a troublesome weed in the western Great Plains and many accessions have evolved resistance to one or more herbicides. Dicamba-resistant soybean is being developed to provide an additional herbicide mechanism of action for POST weed control in soybean. The objective of this study was to evaluate variation in response to dicamba among kochia accessions collected from across Nebraska. Kochia plants were grown in a greenhouse and treated when they were 8 to 12 cm tall. A discriminating experiment with a single dose of 420 g ae ha−1 of dicamba was conducted on 67 accessions collected in Nebraska in 2010. Visual injury estimates were recorded at 21 d after treatment (DAT) and accessions were ranked from least to most susceptible. Four accessions representing two of the most and least susceptible accessions from this screening were subjected to dose-response experiments using dicamba. At 28 DAT, visible injury estimates were made and plants were harvested to determine dry weight. An 18-fold difference in dicamba dose was necessary to achieve 90% injury (I90) between the least (accession 11) and most susceptible accessions. Approximately 3,500 g ha−1 of dicamba was required in accession 11 to reach a 50% dry weight reduction (GR50). There was less than twofold variation among the three more susceptible accessions for both the I90 and GR90 parameters, suggesting that most kochia accessions will be similarly susceptible to dicamba. At 110 DAT, accession 11 had plants that survived doses of 35,840 g ha−1, and produced seed at doses of 17,420 g ha−1. The identification of one resistant accession among the 67 accessions screened, and the fact that dicamba doses greater than 560 g ha−1 were required to achieve GR80 for all accessions suggest that repeated use of dicamba for weed control in fields where kochia is present may quickly result in the evolution of dicamba-resistant kochia populations.

Kochia scoparia es una maleza problemática en el oeste de las Grandes Planicies y muchas accesiones han evolucionado resistencia a uno o más herbicidas. Se está desarrollando soya resistente a dicamba para proveer un mecanismo de acción adicional para el control de malezas POST en soya. El objetivo de este estudio fue evaluar la variación en la respuesta a dicamba entre accesiones de K. scoparia colectada a lo largo de Nebraska. Plantas de K. scoparia fueron crecidas en un invernadero y tratadas cuando tuvieron 8 a 12 cm de altura. Se realizó un experimento de discriminación con una sola dosis de 420 g ae ha−1 de dicamba con 67 accesiones colectadas en Nebraska en 2010. Estimaciones visuales de daño se realizaron 21 días después del tratamiento (DAT) y las accesiones fueron ordenadas de menor a mayor susceptibilidad. Cuatro accesiones representando dos de las accesiones más y menos susceptibles en la evaluación fueron sometidos a experimentos de respuesta a dosis usando dicamba. A 28 DAT, se realizaron las estimaciones visuales de daño y las plantas fueron cosechadas para determinar su peso seco. Una diferencia de 18 veces en la dosis de dicamba fue necesaria para alcanzar 90% de daño (I90) entre la accesión menos susceptible (accesión 11) y las más susceptibles. Se necesitó aproximadamente 3,500 g ha−1 de dicamba para reducir en 50% el peso seco (GR50) de la accesión 11. Hubo una variación de menos de dos veces en los valores de los parámetros I90 y GR90 entre las tres accesiones más susceptibles, lo que sugiere que la mayoría de las accesiones de K. scoparia serán similarmente susceptibles a dicamba. A 110 DAT, la accesión 11 tenía plantas que sobrevivieron la dosis de 35,840 g ha−1, y produjeron semillas a dosis de 17,420 g ha−1. La identificación de una accesión resistente entre 67 accesiones evaluadas, y el hecho de que las dosis de dicamba mayores a 560 g ha−1 fueron necesarias para alcanzar GR80 para todas las accesiones sugiere que el uso repetido de dicamba para el control de malezas en campos donde K. scoparia está presente podría resultar rápidamente en la evolución de poblaciones de esta maleza resistentes a dicamba.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: School of Agriculture, Western Illinois University, Macomb, IL 61455.

References

Literature Cited

Beckie, HJ, Heap, IM, Smeda, RJ, Hall, LM (2000) Screening for herbicide resistance in weeds. Weed Technol 14:428445 Google Scholar
Behrens, MR, Mutlu, N, Chakraborty, S, Dumitru, R, Jiang, WZ, LaVallee, BJ, Herman, PL, Clemente, TE, Weeks, DP (2007) Dicamba resistance: enlarging and preserving biotechnology-based weed management strategies. Science 316:11851188 Google Scholar
Bernards, ML, Gaussoin, RE, Klein, RN, Knezevic, SZ, Kruger, GR, Lyon, DJ, Reicher, ZJ, Sandell, LD, Young, SL, Wilson, RG, Shea, PT, Ogg, CL (2011) Guide for weed management in Nebraska with insecticide and fungicide information. Lincoln, NE: University of Nebraska-Lincoln Extension EC-130. 258 pGoogle Scholar
Burgos, NR, Patrick, JT, Streibig, JC, Davis, VM, Shaner, D, Norsworthy, JK, Ritz, C (2013) Confirmation of resistance to herbicides and evaluation of resistance levels. Weed Sci 61:420 Google Scholar
Cranston, HJ, Kern, AJ, Hackett, JL, Miller, EK, Maxwell, BD, Dyer, WE (2001) Dicamba resistance in kochia. Weed Sci 49:164170 Google Scholar
Crespo, RJ, Bernards, ML, Peterson, R (2012) Perceived likelihood for weeds to evolve resistance to dicamba. Proc North Central Weed Sci Soc 67:11 Google Scholar
Durgan, BR, Dexter, AG, Miller, SD (1990) Kochia (Kochia scoparia) interference in sunflower (Helianthus annuus). Weed Technol 4:5256 Google Scholar
Dyer, WE, Cranston, HJ, Kern, AJ (2001) Physiological characterization of dicamba resistance in kochia. Proc West Soc Weed Sci 54:80 Google Scholar
Eberlein, CV, Fore, ZQ (1984) Kochia biology. Weeds Today 15:57 Google Scholar
Foes, MJ, Liu, L, Vigue, G, Stoller, EW, Wax, LM, Tranel, PJ (1999) A kochia (Kochia scoparia) biotype resistant to triazine and ALS-inhibiting herbicides. Weed Sci 47:2027 Google Scholar
Forcella, F (1985) Spread of kochia in the northwestern United States. Weeds Today 16:46 Google Scholar
Gustafson, DI (2008) Sustainable use of glyphosate in North American cropping systems. Pest Manag Sci 64:409416 Google Scholar
Heap, I (2013) International Survey of Herbicide Resistant Weeds. http://www.weedscience.com. Accessed May 4, 2013Google Scholar
Herman, PL, Behrens, M, Chakraborty, S, Chrastil, BM, Barycki, J, Weeks, DP (2005) A three-component dicamba O-demethylase from Pseudomonas maltophilia, Strain DI6: gene isolation, characterization, and heterozygous expression. J Biol Chem 280:2475924767 Google Scholar
Hinz, J, Allen, J, Arnold, F, Hora, J, Doran, D, DeWeese, WW (2011) Selectivity of glyphosate and HPPD-inhibiting herbicides in a new herbicide-tolerant soybean event. Proc North Central Weed Sci Soc 66:120 [Abstract]Google Scholar
Howatt, KA (1999) Characterization and management of kochia exhibiting variable responses to dicamba. Ph.D. Dissertation. Fort Collins, CO: Colorado State University. 161 pGoogle Scholar
Johnson, WG, Young, B, Matthews, J, Marquardt, P, Slack, C, Bradley, K, York, A, Culpepper, S, Hager, A, Al-Khatib, K, Steckel, L, Moechnig, M, Loux, M, Bernards, M, Smeda, R (2010) Weed control in dicamba-resistant soybeans. http://www.plantmanagementnetwork.org. Accessed May 4, 2013Google Scholar
Knezevic, SZ, Streibig, JC, Ritz, C (2007) Utilizing R software package for dose-response studies: the concept and data analysis. Weed Technol 21:840848 Google Scholar
Manthey, FA, Roach, RE, Nalewaja, JD (1997) Survey of kochia [Kochia scoparia (L.) Schrad.] resistance to tribenuron, dicamba, and 2,4-D in north central North Dakota. Weed Sci Soc Am 37:50 [Abstract]Google Scholar
Mengistu, LW, Messersmith, CG (2002) Genetic diversity of kochia. Weed Sci 50:498503 Google Scholar
Miller, EK, Myers, TM, Hackette, JL, Dyer, WE (1997) Dicamba resistance in kochia [Kochia scoparia (L.) Schrad.]: preliminary studies. Proc West Soc Weed Sci 50:81 Google Scholar
Nandula, VK, Manthey, FA (2002) Response of kochia (Kochia scoparia) inbreds to 2,4-D and dicamba. Weed Technol 16:5054 Google Scholar
Norsworthy, JK, Ward, SM, Shaw, DR, Llewellyn, RS, Nichols, RL, Webster, TM, Bradley, KW, Frisvold, G, Powles, SB, Burgos, NR, Witt, WW, Barrett, M (2012) Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci 60(Special Issue):3162.Google Scholar
Pafford, JC, Wiese, AE (1964) Growth characteristics of various weeds. Proc South Weed Sci Soc 17:365366 Google Scholar
Peterson, MA, Simpson, DM, Cui, C, Scherder, EF, Ruen, DC, Ellis, JM, Richburg, JR, Ferguson, SM, Prasifka, PL, Wright, TR (2009) Performance of Dow Agrosciences herbicide tolerance trait in corn. Proc North Central Weed Sci Soc 64:11 [Abstract]Google Scholar
Preston, C, Belles, DS, Westra, PH, Nissen, SJ, Ward, SM (2009) Inheritance of resistance to the auxinic herbicide dicamba in kochia (Kochia scoparia). Weed Sci 57:4347 Google Scholar
Primiani, MM, Cotterman, JC, Saari, LL (1990) Resistance of kochia (Kochia scoparia) to sulfonylurea and imidazolinone herbicides. Weed Technol 4:169172 Google Scholar
Schwinghamer, TD, Van Acker, RC (2008) Emergence timing and persistence of kochia (Kochia scoparia). Weed Sci 56:3741 Google Scholar
Seefeldt, SS, Jensen, JE, Fuerst, EP (1995) Log-logistic analysis of herbicide dose–response relationships. Weed Technol 9:218227 Google Scholar
Seifert-Higgins, S (2010) Weed management systems in dicamba-tolerant soybeans (DTS). Proc North Central Weed Sci Soc 65:91 [Abstract]Google Scholar
Simpson, DM, Ruen, DC, Scherder, EF, Peterson, MA, Ditmarsen, SC, Ellis, JM, Richburg, JR, Ellis, DT (2009) Performance of Dow Agrosciences herbicide tolerance trait in soybean. Proc North Central Weed Sci Soc 64:120 [Abstract]Google Scholar
Streibig, JC, Rudemo, M, Jensen, JE (1993) Dose-response curves and statistical models. Pages 2955 in Streibig, JC, Kudsk, P, eds. Herbicide Bioassays. Boca Raton, FL: CRC Google Scholar
Stubbendieck, J, Coffin, MJ, Landholt, LM, eds (2003) Weeds of the Great Plains. Lincoln, NE: Nebraska Department of Agriculture. 605 pGoogle Scholar
[USDA–NRCS] US Department of Agriculture Natural Resources Conservation Service (2011) The PLANTS Database. http://plants.usda.gov. Accessed May 4, 2013Google Scholar