Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-28T17:27:12.024Z Has data issue: false hasContentIssue false

Fourier Transform Infrared Spectroscopy of Polymer-Metal Interface Reactions

Published online by Cambridge University Press:  15 February 2011

B. H. Cumpston
Affiliation:
Department of Chemical Engineering Massachusetts Institute of Technology Cambridge, MA 02139
J. P. Lu
Affiliation:
Department of Chemical Engineering Massachusetts Institute of Technology Cambridge, MA 02139
B. G. Willis
Affiliation:
Department of Chemical Engineering Massachusetts Institute of Technology Cambridge, MA 02139
K. F. Jensen
Affiliation:
Department of Chemical Engineering Massachusetts Institute of Technology Cambridge, MA 02139
Get access

Abstract

Applications of Fourier transform infrared (FTIR) spectroscopy for probing polymer-metal interfaces are described with examples of polyimide (PI)-metal systems relevant to electronics packaging and poly(phenylene vinylene) (PPV) derivatives used in electroluminescent devices. Emphasis is placed on the detection and interpretation of interfacial reactions that influence performance characteristics (e.g., adhesion, stability, and light emission) of polymer-metal structures. In situ infrared reflection absorption spectroscopy (IRRAS) is used to explore the formation of PI-on-metal interfaces, the hydrolytic stability of such interfaces, and the reactivity of PPV systems when exposed to ultraviolet light and oxygen. Differences between polymer-on-metal and metal-onpolymer interfaces are discussed. Models of the infrared optical processes in the thin film composites are used to distinguish between chemical and optical effects. The FTIR observations are supported by additional spectroscopic characterizations, specifically ex situ X-ray photoelectron spectroscopy (XPS).

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Anetsberger, I. K.M., in Metallized Plastics 1: Fundamental and Applied Aspects, edited by Mittal, K.L. (Plenum Press, New York, 1989), p. 29.Google Scholar
2. Burroughes, J.H., Bradley, D.D.C., Brown, A.R., Marks, R.N., Mackay, K., Friend, R.H., Burns, P.L., and Holmes, A.B., Nature 347, 539 (1990).Google Scholar
3. Salem, J.R., Sequida, F.O., Duran, J., Lee, W.Y., and Yang, R.M., J. Vac. Sci. Technol. A 4, 369 (1986).Google Scholar
4. Kowalczyk, S.P., Kim, Y., Walker, G.F., and Kim, J., Appl. Phys. Lett. 52, 375 (1988).Google Scholar
5. Haight, R., White, R.C., Silverman, B.D., and Ho, P.S., J. Vac. Sci. Technol. A 6, 2188 (1988).Google Scholar
6. Shih, D.Y., Parasczak, J., Klymko, N., Flitsch, R., Nunes, S., Lewis, J., Yang, C., Cataldo, J., McGouey, R., Graham, W., Serino, R., and Galligan, E., J. Vac. Sci. Technol. A 7, 1402 (1989).Google Scholar
7. Shih, D.Y., Klymko, N., Flitsch, R., Parasczak, J., and Nunes, S., J. Vac. Sci. Technol. A 9, 2963 (1991).Google Scholar
8. Burrell, M.C., Codella, P.J., Fontana, J.A., Chera, J.J., and McConnell, M.D., J. Vac. Sci. Technol. A 7, 55 (1989).Google Scholar
9. Strunkus, T., Hahn, C., and Frankel, D., J. Vac. Sci. Technol. A9, 1272 (1991).Google Scholar
10. Goldberg, M.J., Clabes, J.G., and Kovac, C.A., J. Vac. Sci. Technol. A6, 991 (1988).Google Scholar
11. Freilich, S.C. and Ohuchi, F.S., Polymer 28, 1908 (1987).Google Scholar
12. Bartha, J.W., Hahn, P.O., Legoues, F., and Ho, P.S., J. Vac. Sci. Technol. A3, 1390 (1985).Google Scholar
13. Tromp, R.M., Legoues, F., and Ho, P.S., J. Vac. Sci. Technol. A3, 782 (1985).Google Scholar
14. Adema, G.M., Turlik, I., Hwang, L.T., Rinne, G.A., and Berry, M.J., IEEE Trans. 13, 766 (1990).Google Scholar
15. Burkstrand, J.M., J. Appl. Phys. 52, 4795 (1981).Google Scholar
16. Chou, N.J. and Tang, C.H., J. Vac. Sci. Technol. A2, 751 (1984).Google Scholar
17. Rossi, A.R., Sanda, P.N., Silverman, B.D., and Ho, P.S., Organometallics 6, 580 (1987).Google Scholar
18. Ho, P.S., in Principles of Electronic Packaging, edited by Seraphin, D.P., Lasky, R.C., and Li, C. (McGraw Hill, New York, 1989), p. 811.Google Scholar
19. Satou, H., Suzuki, H., and Makino, D., in Polyimides, edited by Wilson, D., Stenzenberger, H.D., and Hergenrother, P.M. (Chapman and Hall, New York, 1990), p. 227.Google Scholar
20. Lu, J.P., Volfson, D., Trusell, F., and Jensen, K.F., in Chemistry at Polyimide-Metal Interfaces: in situ FTIR Studies of Polymer Curing Processes and Thermal Stability, 1993 (Materials Research Society), p. 518.Google Scholar
21. Koenig, J.L., Spectroscopy of Polymers (American Chemical Society, Washington, D.C., 1992).Google Scholar
22. Stewart, W.C., Leu, J., and Jensen, K.F.,, 1989 (Materials Research Society), p. 285.Google Scholar
23. Dunn, D.S. and Grant, J.L., J. Vac. Sci. Technol. A7, 253 (1989).Google Scholar
24. Kelley, K., Ishino, Y., and Ishida, H., Thin Solid Films 134, 271 (1987).Google Scholar
25. Greenler, R.G., J. Chem. Phys. 44, 310 (1966).Google Scholar
26. Salaneck, W.R. and Brèdas, J.L., Synthetic Metals 67, 11 (1994).Google Scholar
27. Allara, D.L., Baca, A., and Pryde, C.A., Macromolecules 11, 1215 (1978).Google Scholar
28. Parikh, A.N. and Allara, D.L., J. Chem. Phys. 96,927 (1992).Google Scholar
29. Lu, J.P., Nagarkar, P.V., Volfson, D., Trusell, F., Jensen, K.F., and Senturia', S.D., J. Vac. Sci. Technol. in press (1995).Google Scholar
30. Richter, M.M., Fan, F.R., Klavetter, F., Heeger, A.J., and Bard, A.J., Chemical Physics Letters 226, 115 (1994).Google Scholar
31. Nishino, H., Yu, G., Heeger, A.J., Chen, T.A., and Rieke, R.D., Synthetic Metals 68, 243 (1995).Google Scholar
32. Zhang, C., Höger, S., Pakbaz, K., Wudl, F., and Heeger, A.J., J. Electronic Materials 22, 413 (1993).Google Scholar
33. Vestweber, H., Pommerehne, J., Sander, R., Mahrt, R.F., Greiner, A., Heitz, W., and Bässler, H., Synthetic Metals 68, 263 (1995).Google Scholar
34. Papadimitrakopoulos, F., Yan, M., Rothberg, L.J., Katz, H.E., Chandross, E.A., and Galvin, M.E., Mol. Cryst. Liq. Cryst. in press (1995).Google Scholar
35. Yan, M., Rothberg, L.J., Papadimitrakopoulos, F., Galvin, M.E., and Miller, T.M., Physical Review Letters 73, 744 (1994).Google Scholar