Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-18T12:03:05.798Z Has data issue: false hasContentIssue false

Effect of Strain Rate on the Mechanical Behavior of 10-micron Long Polymeric Nanofibers

Published online by Cambridge University Press:  01 February 2011

Mohammad Naraghi
Affiliation:
University of Illinois at Urbana-Champaign, Aerospace Engineering, 104 South Wright St. M/C 236, Urbana, IL, 61874, United States
Ioannis Chasiotis
Affiliation:
University of Illinois at Urbana-Champaign, Aerospace Engineering, Urbana, IL, 61801, United States
Yuris Dzenis
Affiliation:
ydzenis@unl.edu, University of Nebraska-Lincoln, Lincoln, NE, 68588, United States
Y. Wen
Affiliation:
University of Nebraska-Lincoln, Lincoln, NE, 68588, United St ates
Hal Kahn
Affiliation:
harold.kahn@case.edu, Case Western Reserve University, Cleveland, OH, 44106, United States
Get access

Abstract

The strain rate mechanical behavior of 12-micron long polymeric nanofibers was investigated. Experiments were carried out by a novel method that employs a MEMS-based leaf spring load cell attached to a polymeric nanofiber that is drawn with an external PZT actuator. The elongation of the fiber and the deflection of the load cell were calculated from optical microscopy images by using Digital Image Correlation (DIC) and with 65 nm resolution in fiber extension. The nanofibers were fabricated from electrospun polyacrylonitrile (PAN) with MW = 150,000 and diameters between 300-600 nm. At strain rates between 0.00025 s−1 to 0.025 s−1 the fiber ductility scaled directly with the rate of loading while the tensile strength was found to vary non-monotonically: At 0.00025 s−1 material relaxations allowed for near-uniform fiber drawing with up to 120% ductility and 120 MPa maximum tensile strength. At the two faster rates the tensile strength scaled with the rate of loading but the fiber ductility was the result of a cascade of localized deformations at nanoscale necks with relatively constant wavelength for all fiber diameters.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Huang, Z.M., Zhang, Y.Z., Kotaki, M., Ramakrishna, S., J. Compos. Sci. Technol. 63, pp. 22232253 (2003).Google Scholar
2. Li, B.D., Wang, Y., Xia, Y., J. Adv. Mater. 16, pp. 361366 (2004).Google Scholar
3. Zussman, E., Rittel, D., Yarin, A.L., J. Appl. Phys. Lett. 82, pp. 39583960 (2003).Google Scholar
4. Ko, F., Gogotsi, Y., Ashraf, A., Naguib, N., Ye, H., Yang, G., Li, C., Willis, P., J. Adv. Mater. 15, pp. 11611165 (2003).Google Scholar
5. Tan, E.P.S., Lim, C.T., J. Compos. Sci. Technol. 66, pp.11021111 (2006).Google Scholar
6. Cuenot, S., Demoustier-Champagne, S., Nysten, B., Phys. Rev. Lett. 85, pp. 16901693 (2000).Google Scholar
7. Gu, S.Y., Wu, Q.L., Ren, J., Vancso, G.L., Macromolecular Rapid Communications 26, pp. 716720 (2000).Google Scholar
8. Wu, B., Heidelberg, A., J.Boland, J., J. nature materials 4, pp. 525529 (2005).Google Scholar
9. Eppell, S.J., Smith, B.N., Kahn, H., Ballarini, R., J. of the Royal Society Interface 3, pp. 117 (2006).Google Scholar
10. Zussman, E., Burnman, M., Yarin, A.L., Khalfin, R., Cohen, Y., J. Polym. Sci., Part B: Polym. Phys. 44, pp. 14821489 (2006).Google Scholar
11. Tan, E.P.S., Goh, C.N., Sow, C.H., Lim, C.T., Appl. Phys. Lett. 86, pp. 073115(1–3) (2005).Google Scholar
12. Yu, M.F., Files, B.S., Arepalli, S., Ruoff, R., Phys. Rev. Lett. 84, pp. 55525555 (2003).Google Scholar
13. Tan, E.P.S., Lim, C.T., Rev. Sci. Instrum. 75, pp. 25812585 (2004).Google Scholar
14. Inai, R., Kotaki, M., Ramakrishna, S., J. Nanotechnology 16, pp. 208213 (2005).Google Scholar
15. Xu, Q., Xu, L., Cao, W., Wu, S., J. Polym. Adv. Technol. 16, pp. 642645 (2005).Google Scholar
16. Lu, S., Guo, Z., Ding, W., Ruoff, R., Rev. Sci. Instrum. 77, pp. 056103 (1–4) (2006).Google Scholar
17. Zhu, Y., Moldovan, N., Espinosa, H.D., Appl. Phys. Lett. 86, pp. 013506(1–3) (2005).Google Scholar
18. Kahn, H., Ballarini, R., Mullen, R.L., Heuer, H., Proc. R. Soc. Lond. A 455, pp. 38073823 (1999).Google Scholar
19. Jaecklin, V.P., Linder, C., de Rooij, N.F., Moret, J.M., Bischof, R., Rudolf, F. J. Microelectromech. Syst. 92, pp. 147149 (1992).Google Scholar
20. Reimer, L., Schmidt, A., J. Scanning 7, pp. 4753 (1985).Google Scholar
21. Naraghi, M., Chasiotis, I., Kahn, H., Wen, Y., Dzenis, Y., in review in Review of Scientific Instruments (2007)Google Scholar
22. Hutter, J.L., Bechhoefer, J., Rev. Scientific Instruments 64 (7), pp. 18681873 (1993).Google Scholar
23. Dzenis, Y., Wen, Y., Mat. Res. Soc. Symp. Proc. 702, pp. 173178 (2002).Google Scholar