Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T08:42:59.241Z Has data issue: false hasContentIssue false

Neoproterozoic microfossils from the northeastern margin of the East European Platform

Published online by Cambridge University Press:  14 July 2015

Nataliya G. Vorob'eva
Affiliation:
Geological Institute, Russian Academy of Sciences, Pyzhevskii per., 7, Moscow, 119017, Russia,
Vladimir N. Sergeev
Affiliation:
Geological Institute, Russian Academy of Sciences, Pyzhevskii per., 7, Moscow, 119017, Russia,
Andrew H. Knoll
Affiliation:
Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, Massachusetts 02138,

Abstract

The Kel'tminskaya-1 borehole, drilled along the northeastern margin of the East European Platform (EEP), reveals some 3,600 m of Neoproterozoic sedimentary rocks, mostly confined to the subsurface. The upper 1,000 m of the drilled section correlates with late Ediacaran Redkino and Kotlin successions on the EEP, whereas the lowermost 2,000 m can be related to pre-Sturtian (Upper Riphean) deposits in the Ural Mountains. In between lies the Vychegda Formation, a 600 m siliciclastic succession that has no counterpart in classic EEP stratigraphy.

Vychegda microfossils can be separated into three assemblages. The upper part of the formation contains large, profusely ornamented acritarchs broadly comparable to those of the Ediacaran Complex Acanthomorph Palynoflora, including species of the genera Alicesphaeridium, Asterocapsoides, Cavaspina and Tanarium confined to Ediacaran-aged assemblages elsewhere. Diverse large acanthomorphs are known from Ediacaran strata around the world, but have not previously been recognized from the EEP, an absence attributed to a hiatus between the glacial Laplandian (>635 Ma) and Redkino (mostly <555 Ma) successions. The large acanthomorphic acritarchs record eukaryotic organisms with resting stages in their life cycles and likely include egg or diapause cysts of early animals. In contrast, the lower Vychegda assemblage, found in the basal 10 m of the succession, contains taxa typical of earlier Neoproterozoic successions. The middle assemblage contains only simple filaments and spheroidal acritarchs.

The most parsimonious interpretation of Vychegda biostratigraphy is that pre-Marinoan rocks in the basal part of the formation are separated by a cryptic unconformity from early and middle Ediacaran deposits above. This interpretation is consistent with data from China and Australia, which indicate that the major paleontological transition to diverse ECAP assemblages took place within the Ediacaran Period and not in association with the preceding ice age. Vychegda acritarch assemblages thus contribute to a biostratigraphic model for the initial Ediacaran boundary.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, C. W. and Awramik, S. M. 1989. Organic-walled microfossils from earliest Cambrian or latest Proterozoic Tindir Group rocks, northwest Canada. Precambrian Research, 43:253294.CrossRefGoogle Scholar
Arouri, K., Greenwood, P., and Walter, M. R. 2000. Biological affinities of Neoproterozoic acritarchs from Australia: microscopic and chemical characterisation. Organic Geochemistry, 31:7589.CrossRefGoogle Scholar
Blades-Eckelbarger, P. I. and Marcus, N. H. 1992. The origin of cortical vesicles and their role in egg envelope formation in the spiny eggs of a calanoid copepod, Centropages velificatus . Biological Bulletin, 182:4153.CrossRefGoogle ScholarPubMed
Burzin, M. B. 1993. The oldest Chitridiomycetes (Mycota, Chitridiomycetes Incertae Sedis) from the Upper Vendian of East European Platform, p. 2433. In Fauna and ecosystems of the geological past. Nauka, Moscow. (In Russian)Google Scholar
Burzin, M. B. 1994. Principal trends in evolution of phytoplankton during the late Precambrian and earlier Cambrian, p. 5162. In Ecosystem transformations and evolution of the biosphere. Nauka, Moscow. (In Russian)Google Scholar
Burzin, M. B. and Kuz'menko, T. Y. 2000. A high-resolution stratigraphic chart of the Vendian deposits in the Mezen Syneclise, p. 3940. In Actual geological problems of mineral deposits in sedimentary basins, the European part of North Russia. Geoprint, Syktyvkar, Russia. (In Russian)Google Scholar
Butterfield, N. J. 2004. A vaucherian alga from the middle Neoproterozoic of Spitsbergen: Implications for the evolution of Proterozoic eukaryotes and the Cambrian explosion. Paleobiology, 30:231252.2.0.CO;2>CrossRefGoogle Scholar
Butterfield, N. J. 2007. Macroevolution and macroecology through deep time. Palaeontology, 50:4155.CrossRefGoogle Scholar
Butterfield, N. J., Knoll, A. H., and Swett, K. 1994. Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Fossils and Strata, 34, 84 p.Google Scholar
Calver, C. R., Black, L. P., Everard, J. L., and Seymour, D. B. 2004. U-Pb zircon age constraints on late Neoproterozoic glaciation in Tasmania. Geology, 32:893896.CrossRefGoogle Scholar
Canfield, D. E., Poulton, S. W., and Narbonne, G. M. 2007. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science, 315:9295.CrossRefGoogle ScholarPubMed
Chumakov, N. M. 1990. Laplandian glacial horizon and its equivalents, p. 191225. In Sokolov, B. S. and Fedonkin, M. A. (eds.), The Vendian System, Volume 2: Regional Geology. Springer-Verlag, Berlin.Google Scholar
Chumakov, N. M. and Pokrovsky, B. G. 2007. Vendian glacial deposits of the North and Middle Urals: Depositional environments and stratigraphic position, p. 4753. In The Rise and Fall of the Vendian (Ediacaran) biota. Origin of the Modern Biosphere. Transaction of the International Conference on the IGCP Project 493. Geos, Moscow.Google Scholar
Chumakov, N. M. and Sergeev, V. N. 2004. The problems of climatic zonality in the Late Precambrian. Climatic and biosphere events, p. 230258. In Semikhatov, M. A. and Chumakov, N. M. (eds.), Climate in the epochs of major biospheric transformations. Nauka, Moscow. (In Russian)Google Scholar
Cohen, P. 2007. Exploring the taxonomic affinities of Neoproterozoic and Paleozoic acritarchs. Geological Society of America Abstracts with Programs, 39(6):332.Google Scholar
Cohen, P., Bradley, A., Knoll, A. H., Grotzinger, J. P., Jensen, S., Abelson, J., Hand, K., Love, G., Metz, J., McLoughlin, N., Meister, P., Shepherd, R., Tice, M., and Wilson, J. P. 2009. Tubular compression fossils from the Ediacaran Nama Group, Namibia. Journal of Paleontology, 83(1): 110122.CrossRefGoogle Scholar
Cohen, P., Knoll, A. H., and Kodner, R. 2008. Evolutionary, ecological, and paleoenvironmental implications of Ediacaran acritarchs as metazoan resting stages. Geological Society of America, Abstracts with Programs, in press.Google Scholar
Combaz, A., Lange, F. W., and Pansart, J. 1967. Les “Leiofusidae” Eisenack, 1938. Review of Palaeobotany and Palynology, 1:207307.CrossRefGoogle Scholar
Compston, W., Sambridge, M. S., Reinfrank, R. F., Moczydlowska, M., Vidal, G., and Claesson, S. 1995. Numerical ages of volcanic rocks and the earliest faunal zone within the Late Precambrian of east Poland. Journal of the Geological Society of London, 152:599611.CrossRefGoogle Scholar
Condon, D., Zhu, M., Bowring, S., Wang, W., Yang, A., and Jin, Y. 2005. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science, 308:9598.CrossRefGoogle ScholarPubMed
Damassa, S. P. and Knoll, A. H. 1986. Micropaleontology of the late Proterozoic Arcoona Quartzite Member of the Tent Hill Formation, Stuart Shelf, South Australia. Alcheringa, 10:417430.CrossRefGoogle Scholar
Dong, L., Xiao, S., Shen, B., Yuan, X., Yan, X., and Peng, Y. 2008. Restudy of the worm-like carbonaceous compression fossils Protoarenicola, Pararenicola, and Sinosabellidites from early Neoproterozoic successions in North China. Palaeogeography, Palaeoclimatology, Palaeoecology, 258: 138161.CrossRefGoogle Scholar
Downie, C., Evitt, W. R., and Sarjeant, W. A. S. 1963. Dinoflagellates, hystrichospheres, and the classification of the acritarchs. Stanford University Publications, Geological Sciences, 7:116.Google Scholar
Droser, M. L., Gehling, J. G., and Jensen, S. R. 2005. Ediacaran trace fossils: True and false. In Briggs, D. E. (ed.), Evolving Form and Function: Fossils and Development. Peabody Museum of Natural History, New Haven, p. 125138.Google Scholar
Deunff, J. 1955. Un microplancton fossile Dévonien a Hystrichosphères du Continent Nord-Américain. Bulletin de la Microscopie Applquée, Sér. 2, 5:138149.Google Scholar
Eisenack, A. 1958. Microfossilien aus dem Ordovizium des Baltikums. 1. Markasitschicht, Dictyonema-Scheifer, Glaukonitsand, Glaukonitkalk. Senckenbergian Lethaea, 39:389404.Google Scholar
Fedonkin, M. A. 1981. White Sea biota of the Vendian. Nauka, Moscow, 100 p. (In Russian)Google Scholar
Fedonkin, M. A. 1987. Non-skeletal fauna of the Vendian and its place in the evolution of metazoans. Trudy Paleontologicheskogo Instituta Akademii Nauk SSSR, 226:1173. (In Russian)Google Scholar
Fike, D. A., Grotzinger, J. P., Pratt, L. M., and Summons, R. E. 2006. Oxidation of the Ediacaran Ocean. Nature, 444:744747.CrossRefGoogle ScholarPubMed
Ford, T. D. and Breed, W. J. 1973. The problematical Precambrian fossil Chuaria . Palaeontology, 16:535550.Google Scholar
Gechen, V. G., Dedeev, V. A., and Bashilov, V. I. 1987. Riphean and Vendian of the European North of the USSR. Oblknigoizdat, Vologda, Russia, 186 p. (In Russian)Google Scholar
Gnilovskaya, M. B. 1998. Oldest annelidomorphs of the Upper Riphean from the Timan. Doklady Earth Sciences, 359(3):369372.Google Scholar
Gnilovskaya, M. B., Veis, A. F., Bekker, Y. R., Olovyanishnikov, V. G., and Raaben, M. E. 2000. Pre-Ediacaran fauna from Timan (Annelidomorphs of the Late Riphean). Stratigraphy and Geological Correlation, 8: 1139.Google Scholar
Golubic, S., Sergeev, V. N., and Knoll, A. H. 1995. Mesoproterozoic Archaeoellipsoides: akinetes of heterocystous cyanobacteria. Lethaia, 28:285298.CrossRefGoogle ScholarPubMed
Golubkova, E. Y. and Raevskaya, E. G. 2007. Lower Vendian complex of microfossils from the interior part of the Siberian platform, p. 3941. The Rise and Fall of the Vendian (Ediacaran) biota. Origin of the Modern Biosphere. Transaction of the International Conference on the IGCP Project 493. GEOS, Moscow.Google Scholar
Gorunova, S. V., Rzhanova, G. N., and Orleanskii, V. K. 1969. Bluegreen algae. Nauka, Moscow, 229 p. (In Russian)Google Scholar
Gradstein, F. M., Ogg, J., and Smith, A. G. (eds.). 2004. A Geologic Time Scale 2004. Cambridge University Press, Cambridge UK, 589 p.CrossRefGoogle Scholar
Graham, L. E. and Wilcox, L. W. 2000. Algae. Prentice-Hall, Upper Saddle River NJ, 640 p.Google Scholar
Gravestock, D. I., Morton, J. G. G., and Zang, W. L. 1997. Chapter 7: Biostratigraphy and correlation, 87–97. In Morton, J. G. G. and Drexel, J. F. (eds.), Petroleum Geology of South Australia, Volume 3: Officer Basin. South Australia. Department of Mines and Energy Resources Report Book 97/19.Google Scholar
Green, J., Knoll, A. H., Golubic, S., and Swett, K. 1987. Paleobiology of distinctive benthic microfossils from the Upper Proterozoic Limestone-Dolomite “Series”, East Greenland. American Journal of Botany, 74:928940.CrossRefGoogle ScholarPubMed
Grey, K. 2002. Surviving snowball Earth: Australia's acritarch record. Geological Survey of Western Australia Report, 2002, Extended Abstracts:89.Google Scholar
Grey, K. 2005. Ediacaran palynology of Australia. Association of Australasian Palaeontologists Memoir 31, 439 p.Google Scholar
Grey, K. and Calver, C. R. 2007. Correlating the Ediacaran of Australia. Geological Society, London, Special Publications, 286:115135.CrossRefGoogle Scholar
Grey, K., and Willman, S. In press. Taphonomy of Ediacaran acritarchs from Australia: Significance for taxonomy and biostratigraphy. Palaios.Google Scholar
Grey, K., Walter, M. R., and Calver, C. R. 2003. Neoproterozoic biotic diversification: Snowball Earth or aftermath of the Acraman impact? Geology, 31:459462.2.0.CO;2>CrossRefGoogle Scholar
Hermann, T. N. 1974. Finds of massive accumulations of trichomes in the Riphean, p. 610. In Timofeev, B. V. (ed.), Microfossils of Proterozoic and early Paleozoic of the USSR. Nauka, Leningrad. (In Russian)Google Scholar
Hermann, T. N. 1990. Organic world a billion years ago. Nauka, Leningrad, 50 p. (In Russian, with English summary)Google Scholar
Hermann, T. N. and Timofeev, B. V. 1985. Eosolenids—the new group of late Precambrian problematic organisms, p. 915. Late Precambrian and Paleozoic problematics. Academy of Sciences of the USSR, Siberian Branch, Geology and Geophysics Institute, 632. (In Russian)Google Scholar
Hoffmann, K. H., Condon, D. J., Bowring, S. A., and Crowley, J. L. 2004. A U-Pb zircon age from the Neoproterozoic Ghaub Formation, Namibia: Constraints on Marinoan glaciation. Geology, 32:817820.CrossRefGoogle Scholar
Hoffman, P. F., Halverson, G. P., Domack, E. W., Husson, J. M., Higgins, J. M., and Schrag, D. P. 2007. Are basal Ediacaran (635 Ma) postglacial “cap dolostones” diachronous? Earth and Planetary Science Letters, 258:114131.CrossRefGoogle Scholar
Hofmann, H. J. and Jackson, C. D. 1994. Shelf-facies microfossils from the Proterozoic Bylot Supergroup, Baffin Island, Canada. Paleontological Society Memoir 37, 39 p.Google Scholar
Inouye, I., Hori, T., and Moestrup, Ø. 2003. Ultrastructural studies of Cymbomonas tetramitiformis (Prasinophyceae). I. General structure, scale microstructure, and ontogeny. Canadian Journal of Botany, 81:651671.Google Scholar
Javaux, E., Knoll, A. H., and Walter, M. R. 2004. TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology, 2:121132.CrossRefGoogle Scholar
Khomentovskii, V. V., Schenfil', V. Y., and Pyatiletov, V. G. 1987. Main problems of stratigraphy of the pre-usolian deposits from the inner region of the Siberian Platform. Geology and Geophysics, 11:311. (In Russian)Google Scholar
Knoll, A. H. 1984. Microbiotas of the Late Precambrian Hunnberg Formation, Nordaustlandet, Svalbard. Journal of Paleontology, 58:131162.Google Scholar
Knoll, A. H. 1992. Vendian microfossils in metasedimentary cherts of the Scotia Group, Prins Karls Forland, Svalbard. Palaeontology, 35:751774.Google ScholarPubMed
Knoll, A. H. 1994. Proterozoic and Early Cambrian protists: Evidence for accelerating evolutionary tempo. Proceedings of the National Academy of Sciences, USA, 91:67436750.CrossRefGoogle ScholarPubMed
Knoll, A. H. and Calder, S. 1983. Microbiota of the Late Precambrian Ryssö Formation, Nordaustlandet, Svalbard. Palaeontology, 26:467496.Google Scholar
Knoll, A. H. and Swett, K. 1987. Micropaleontology across the Precambrian-Cambrian boundary in Spitsbergen. Journal of Paleontology, 61:898926.CrossRefGoogle Scholar
Knoll, A. H., Swett, K., and Mark, J. 1991. Paleobiology of a Neoproterozoic tidal flat/lagoonal complex: the Draken Conglomerate Formation, Spitsbergen. Journal of Paleontology, 65:531570.CrossRefGoogle ScholarPubMed
Knoll, A. H., Walter, M. R., Narbonne, G., and Christie-Blick, N. 2004. A new period for the geologic time scale. Science, 305:621622.CrossRefGoogle ScholarPubMed
Knoll, A. H., Walter, M. R., Narbonne, G., and Christie-Blick, N. 2006a. The Ediacaran Period: A new addition to the geologic time scale. Lethaia, 39:1330.CrossRefGoogle Scholar
Knoll, A. H., Javaux, E. J., Hewitt, D., and Cohen, P. 2006b. Eukaryotic organisms in Proterozoic oceans. Philosophical Transactions of the Royal Society, London, 361B:10231038.Google Scholar
Kolosova, S. P. 1991. Late Precambrian thorny microfossils of the east of the Siberian Platform. Algologia, 39:5359. (In Russian)Google Scholar
Li, C.-W., Chen, J.-Y., Lipps, J. H., Gao, F., Chi, H.-M., and Wu, H.-J. 2007. Ciliated protozoans from the Precambrian Doushantuo Formation, Wengan, South China. Geological Society, London, Special Publication, 286:151156.CrossRefGoogle Scholar
Marcus, N. H. and Boero, F. 1998. Minireview: The importance of benthicpelagic coupling and the forgotten role of life cycles in coastal aquatic systems. Limnology and Oceanography, 43:763768.CrossRefGoogle Scholar
Martin, M. W., Grazhdankin, D. V., Bowring, S. A., Evans, D. A. D., Fedonkin, M. A., and Kirschvink, J. L. 2000. Age of Neoproterozoic bilatarian body and trace fossils, White Sea, Russia: Implications for metazoan evolution. Science, 288:841845.CrossRefGoogle ScholarPubMed
McFadden, K. A., Xiao, S., Zhou, C., Xie, G., and Schiffbauer, J. D. 2006. Doushantuo-Pertatataka acritarchs in Ediacaran successions of South China: preservational bias or ecological control? Geological Society of America Abstracts with Programs, 38(7):303.Google Scholar
McFadden, K. A., Huang, J., Chu, X. L., Jiang, G. Q., Kaufman, A. J., Zhou, C. M., Yuan, X. L., and Xiao, S. 2008. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences, USA, 105:31973202.CrossRefGoogle ScholarPubMed
Mikhailova, N. S. 1986. New finds of the microfossils from the Upper Riphean deposits of the Krasnoyarsk region, p. 3137. In Current problems of modern paleoalgology. Nauka, Kiev. (In Russian)Google Scholar
Mikhailova, N. S. and Podkovyrov, V. N. 1992. New data on the organic wall microfossils from the upper Precambrian of Ural. Izvestiya Akademiya Nauk SSSR, Seriya Geologicheskaya, 10:111123. (In Russian)Google Scholar
Moczydlowska, M. 1991. Acritarch biostratigraphy of the Lower Cambrian and the Precambrian-Cambrian boundary in southeastern Poland. Fossils and Strata, 29:1127.Google Scholar
Moczydlowska, M. 2005. Taxonomic review of some Ediacarian acritarchs from the Siberian Platform. Precambrian Research, 136:283307.CrossRefGoogle Scholar
Moczydlowska, M. 2008a. The Ediacaran microbiota and the survival of Snowball Earth conditions. Precambrian Research, 167:115.CrossRefGoogle Scholar
Moczydlowska, M. 2008b. New records of late Ediacaran microbiota from Poland. Precambrian Research, 167:7192.CrossRefGoogle Scholar
Moczydlowska, M. and Vidal, G. 1988. How old is the Tommotian? Geology, 16:166168.2.3.CO;2>CrossRefGoogle Scholar
Moczydlowska, M., Vidal, G., and Rudavskaya, V. A. 1993. Neoproterozoic (Vendian) phytoplankton from the Siberian Platform, Yakutia. Palaeontology, 36:495521.Google Scholar
Nagovitsin, K. E., Faizullin, M. S., and Yakskhin, M. S. 2004. New forms of Baikalian acanthomorphytes from the Ura Formation of the Patom Uplift, East Siberia. Novosti paleontologii i stratigrafii (Geologiya i geofizika, 45), 6/7:719. (In Russian)Google Scholar
Naumova, S. N. 1949. Spores of the Lower Cambrian. Izvestiya Akademiya Nauk SSSR, Seriya Geologicheskaya, 4:4956. (In Russian)Google Scholar
Ovchinnikova, G. V., Vasil'eva, I. M., Semikhatov, M. A., Gorokhov, I. M., Kuznetsov, A. B., Gorokhovskii, B. M., and Levskii, L. K. 2000. The Pb-Pb trail dating of carbonates with open U-Pb systems: The Min'yar Formation of the Upper Riphean stratotype, southern Urals. Stratigraphy and Geological Correlation, 8:529543.Google Scholar
Peterson, K. J. and Butterfield, N. J. 2005. Origin of the Eumetazoa: Testing ecological predictions of molecular clocks against the Proterozoic fossil record. Proceedings of the National Academy of Sciences, USA, 102: 95479552.CrossRefGoogle ScholarPubMed
Pyatiletov, V. G. 1980. The Yudomian assemblage of microfossils of South Yakutia. Geology and Geophysics, 21(7):820. (In Russian)Google Scholar
Pyatiletov, V. G. and Rudavskaya, V. A. 1985. Acritarchs of the Yudoma Complex, p. 151158. In Sokolov, B. S. and Ivanovskii, A. B. (eds.), The Vendian System 1, Palaeontology, Nauka, Moscow (In Russian, English Translation published in 1990, The Vendian System, Volume 1. Springer-Verlag, Berlin, 179–188).Google Scholar
Raaben, M. E. and Oparenkova, L. I. 1997. New data on the Riphean Stratigraphy of Timan. Stratigraphy and Geological Correlation, 14(4):368385.Google Scholar
Reitlinger, E. A. 1948. Cambrian foraminifera of Yakutia. Bulletin of Moscow Nature Investigators Society, Geological Section, 23(2):7781.Google Scholar
Rudavskaya, V. A. and Vasil'eva, N. J. 1989. Talsy assemblage of acritarchs from the Nepa-Botuoba Anteclise, p. 511. In Timoshina, N. A. (ed.), Phytostratigraphy and spore morphology of the ancient plants in the oilgas provinces in the USSR. Vsesoyuznyi Nefteyanoi Nauchno-Issledovatelskii Geologorazvedochnyi Institut (VNIGRI), Leningrad. (In Russian)Google Scholar
Schopf, J. W. 1968. Microflora of the Bitter Springs Formation, Late Precambrian, Central Australia. Journal of Paleontology, 42:651688.Google Scholar
Schopf, J. W. 1992. Chapter 24. Atlas of representative Proterozoic Microfossils, p. 10571117. In Schopf, J. W. and Klein, C. (eds.), Evolution of the Proterozoic biosphere—a multidisciplinary study. Cambridge University Press, New York.CrossRefGoogle Scholar
Semikhatov, M. A. 1991. General problems of Proterozoic stratigraphy in the USSR. Geology Reviews, 1, 192 p.Google Scholar
Sergeev, V. N. 1992. Silicified microfossils from the Precambrian and Cambrian deposits of the southern Ural Mountains and Middle Asia. Nauka, Moscow, 134 p. (In Russian)Google Scholar
Sergeev, V. N. 2006. Precambrian microfossils in cherts: their paleobiology, classification and biostratigraphic usefulness. GEOS, Moscow, 280 p. (In Russian)Google Scholar
Sokolov, B. S. 1984. The Vendian System and its position in the stratigraphic scale. Proceedings of the 27th International Geological Congress (Stratigraphy), 1:241269.Google Scholar
Sokolov, B. S. 1997. Essays on the establishment of the Vendian System. KMK Scientific Press, Moscow, 153 p. (In Russian)Google Scholar
Sokolov, B. S. and Fedonkin, M. A. 1984. The Vendian as the terminal system of the Precambrian. Episodes, 7(1): 1219.CrossRefGoogle Scholar
Sokolov, B. S. and Fedonkin, M. A. (eds.). 1990 (Russian version in 1985). The Vendian System. Volume 2. Regional geology. Springer-Verlag, Berlin, 277 p.Google Scholar
Spjeldnaes, N. 1963. A new fossil (Papillomembrana sp.) from the Upper Precambrian of Norway. Nature, 200:6364.CrossRefGoogle Scholar
Talyzina, N. 2000. Ultrastructure and morphology of Chuaria circularis (Walcott, 1899) Vidal and Ford (1985) from the Neoproterozoic Visingso Group, Sweden. Precambrian Research, 102:123134.CrossRefGoogle Scholar
Talyzina, N. and Moczydlowska, M. 2000. Morphological and ultrastructural studies of some acritarchs from the Lower Cambrian Lukati Formation, Estonia. Review of Palaeobotany and Palynology, 112:121.CrossRefGoogle ScholarPubMed
Tappan, H. 1980. The Paleobiology of Plant Protists. W. H. Freeman, San Francisco, 1028 p.Google Scholar
Timofeev, B. V. 1969. Proterozoic sphaeromorphs. Nauka, Leningrad, 146 p. (In Russian)Google Scholar
Timofeev, B. V. and Hermann, T. N. 1979. The Precambrian microbiota of the Lakhanda Formation, p. 137147. In Sokolov, B. S. (ed.), Paleontology of Precambrian and Early Cambrian. Nauka, Leningrad. (In Russian)Google Scholar
Timofeev, B. V., Hermann, T. N., and Mikhailova, N. S. 1976. Microphytofossils from the Precambrian, Cambrian and Ordovician. Nauka, Leningrad, 106 p. (In Russian)Google Scholar
Tiwari, M. and Knoll, A. H. 1994. Large acanthomorphic acritarchs from the Infrakrol Formation of the Lesser Himalaya and their stratigraphic significance. Journal of Himalayan Geology, 5:193201.Google Scholar
Tereshko, V. V. and Kyrillin, S. I. 1990. New data on Upper Proterozoic Stratigraphy of the Southern Timan, p. 8182. The Upper Proterozoic Stratigraphy of the USSR (Riphean and Vendian). AN SSSR Scientific Publisher, Ufa. (In Russian)Google Scholar
Van Waveren, I. and Marcus, N. H. 1993. Morphology of recent copepod egg envelopes from Turkey Point, Gulf of Mexico, and their implications for acritarch affinity. Special Papers in Paleontology, 48:111124.Google Scholar
Velikanov, L. L., Garibova, L. V., and Gorbunova, N. P. 1981. Lower plants. Vyshhaya Schola Publisher, Moscow, 164 p. (in Russian)Google Scholar
Veis, A. F., Fedorov, D. L., Kuzmenko, Y. T., Vorob'eva, N. G., and Golubkova, E. Y. 2004. Microfossils and Riphean Stratigraphy in the North European Platform (Mezen Syneclise). Stratigraphy and Geological Correlation, 12(6): 1635.Google Scholar
Veis, A. E., Vorob'eva, N. G., and Golubkova, E. Y. 2006. The Early Vendian microfossils first found in the Russian Plate: Taxonomic composition and biostratigraphic significance. Stratigraphy and Geological Correlation, 14(4):368385.CrossRefGoogle Scholar
Vidal, G. 1976. Late Precambrian microfossils from the Visingso Beds in Southern Sweden. Fossils and Strata, 9:157.Google Scholar
Vidal, G. 1990. Giant acanthomorph acritarchs from the upper Proterozoic in southern Norway. Palaeontology, 33:287298.Google Scholar
Vidal, G. and Ford, T. D. 1985. Microbiotas from the Late Proterozoic Chuar Group (Northern Arizona) and Uinta Group (Utah) and their chronostratigraphic implications. Precambrian Research, 28:344389.CrossRefGoogle Scholar
Volkova, N. A. 1968. Acritarchs of the Precambrian and Lower Cambrian deposits of Estonia, p. 836. In Volkova, N. A. et al. (eds.), Problematics of Riphean and Cambrian layers of the Russian Platform, Urals, and Kazkhstan. Transactions, Academy of Sciences USSR 188, Nauka, Moscow. (in Russian)Google Scholar
Volkova, N. A., Kirjanov, V. V., Piskun, L. V., Paskeviciene, L. T., and Yankauskas, T. V. 1979. Plant microfossils, p. 546. In Upper Precambrian and Cambrian palaeontology of East European Platform. Nauka, Moscow (English version, 1983, p. 7–46).Google Scholar
Vorob'eva, N. G., Sergeev, V. N., and Semikhatov, M. A. 2006. Unique Lower Vendian Kel'tma microbiota, Timan Ridge: new evidence for the paleontological essence and global significance of the Vendian System. Doklady Earth Sciences, 40:10381043.CrossRefGoogle Scholar
Vorob'eva, N. G., Sergeev, V. N., and Knoll, A. H. 2007. Microfossil assemblages from the Vychegda Formation of the East European Platform passive margin—a biostratigraphic model for the Upper Riphean (Crygenian)/Vendian (Ediacaran) boundary, p. 4246. In The Rise and Fall of the Vendian (Ediacaran) biota. Origin of the Modern Biosphere. Transaction of the International Conference on the IGCP Project 493. Geos, Moscow.Google Scholar
Vorob'eva, N. G., Sergeev, V. N., and Chumakov, N. M. 2008. New Finds of Early Vendian Microfossils in the Ura Formation: Revision of the Patom Supergroup Age, Middle Siberia. Doklady Earth Sciences, 419:782787.Google Scholar
Vorob'eva, N. G., Sergeev, V. N., and Knoll, A. H. In press. Neoproterozoic microfossils from the margin of the East European Platform and the search for a biostratigraphic model of lower Ediacaran rocks. Precambrian Research.Google Scholar
Walcott, C. D. 1899. Precambrian fossiliferous formations. Geological Society of America Bulletin, 10:199244.CrossRefGoogle Scholar
Wang, G. 1982. Late Precambrian Annelida and Pogonophora from the Huainan of Anhui Province. Bulletin of the Tianjin Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences 6:922.Google Scholar
Waterbury, J. B. and Stanier, R. Y. 1978. Patterns of growth and development in pleurocapsalean cyanobacteria. Microbiological Reviews, 42:244.CrossRefGoogle ScholarPubMed
Willman, S. In press. Morphology and wall ultrastructure of leiosphaeric and acanthomorphic acritarchs from the Ediacaran of Australia. Geobiology.Google Scholar
Willman, S. and Moczydlowska, M. 2007. Wall ultrastructure of an Ediacaran acritarch from the Officer Basin, Australia. Lethaia, 40:111123.CrossRefGoogle Scholar
Willman, S. and Moczydlowska, M. 2008. Ediacaran acritarch biota from the Giles 1 drillhole, Officer Basin, Australia, and its potential for biostratigraphic correlation. Precambrian Research, 162:498530.CrossRefGoogle Scholar
Willman, S., Moczydlowska, M., and Grey, K. 2006. Neoproterozoic (Ediacaran) diversification of acritarchs—a new record from the Murnaroo 1 drillcore, eastern Officer Basin, Australia. Review of Palaeobotany and Palynology, 139:1739.CrossRefGoogle Scholar
Xiao, S., Yuan, X., Steiner, M., and Knoll, A. H. 2002. Carbonaceous macrofossils in a terminal Proterozoic shale: a systematic reassessment of the Miaohe biota, South China. Journal of Paleontology, 76:347376.CrossRefGoogle Scholar
Yankauskas, T. V. 1978. Vegetable microfossils from the upper Riphean of the Southern Urals. Doklady Akademii Nauk SSSR, 251:913915. (In Russian)Google Scholar
Yankauskas, T. V. 1980. On the micropaleontological characteristics of the Middle and Upper Cambrian in the northwest of the East European Platform. Izvestiya Akademiya Nauk Estonskoyi SSR, Geology, 19(4): 131135. (In Russian)Google Scholar
Yankauskas, T. V. 1982. Microfossils of the Riphean of the Southern Urals, p. 84120. In Keller, B. M. (ed.), Stratotype of the Riphean: Paleontology, Paleomagnetism. Nauka, Moscow. (In Russian)Google Scholar
Yankauskas, T. V. (ed.). 1989. Mikrofossilii dokembrya SSSR (Precambrian microfossils of the USSR). Trudy Instituta Geologii i Geochronologii Dokembria SSSR Akademii Nauk, Leningrad, 188 p. (In Russian)Google Scholar
Yin, L. 1987. Microbiotas of latest Precambrian sequences in China. Stratigraphy and Palaeontology of Systemic Boundaries in China, Precambrian-Cambrian Boundary, 1:415494.Google Scholar
Yin, L. 1985a. Microfossils of the Doushantuo Formation in the Yangtze Gorge district, western Hebei. Palaeontologia Cathayana, 2:229249.Google Scholar
Yin, L. 1985b. Microbiotas of latest Precambrian sequences in China. Stratigraphy and Palaeontology of Systemic Boundaries in China, Precambrian-Cambrian Boundary, 1:415494.Google Scholar
Yin, L. and Li, Z. 1978. Precambrian microfossils of Southwest China. Memoir, Nanjing Institute of Geology and Palaeontology, Academica Sinica, 10: 41102.Google Scholar
Yin, L., Zhu, M., Knoll, A. H., Yuan, X., Zhang, J., and Hu, J. 2007. Doushantuo embryos preserved inside diapause egg cyst. Nature, 446:661663.CrossRefGoogle Scholar
Yin, L., Zhou, C., and Yuan, X. 2008. New data on Tianzhushania—an Ediacaran diapause egg cyst from Yichang, Hubei. Acta Palaeontologica Sinica, 47:129140. (In Chinese)Google Scholar
Yuan, X. L., Xiao, S., Li, J., and Cao, R. J., 2001. Pyritized chuarids with excystment structures from the late Neoproterozoic Lantian formation in Anhui, South China. Precambrian Research, 107:253263.CrossRefGoogle Scholar
Yuan, X., Xiao, S., Yin, L., Knoll, A. H., Zhou, C., and Mu, X. 2002. Doushantuo Biota: A Window on Early Multicellular Life. Chinese Scientific and Technological University Press, Shengzhen, China, 171 p. (In Chinese)Google Scholar
Yuan, X. and Hofmann, H. J. 1998. New microfossils from the Neoproterozoic (Sinian) Doushantuo Formation, Wengan, Guizhou Province, southwestern China. Alcheringa, 22:189222.Google Scholar
Zang, W. and Walter, M. R. 1989. Latest Proterozoic plankton from the Amadeus Basin in central Australia. Nature, 337:642645.CrossRefGoogle Scholar
Zang, W. and Walter, M. R. 1992. Late Proterozoic and Early Cambrian microfossils and biostratigraphy, Amadeus Basin, central Australia. Association of Australasian Palaeontologists Memoir, 12:1132.Google Scholar
Zhang, Y., Yin, L., Xiao, S., and Knoll, A. H. 1998. Permineralized fossils from the terminal Proterozoic Doushantuo Formation, China. Paleontological Society Memoir 50, 56 p.Google Scholar
Zhou, G., Xie, G., Mcfadden, K., Xiao, S., and Yuan, X. 2007. The diversification and extinction of Doushantuo-Pertatataka acritarchs in South China: Causes and biostratigraphic significance. Geological Journal, 42:229262.Google Scholar