Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-17T22:58:39.169Z Has data issue: false hasContentIssue false

High temperature thermoelectric properties of BaxYbyFe3CoSb12 p-type skutterudites

Published online by Cambridge University Press:  05 June 2015

Yongkwan Dong
Affiliation:
Department of Physics, University of South Florida, Tampa, Florida 33620, USA
George S. Nolas*
Affiliation:
Department of Physics, University of South Florida, Tampa, Florida 33620, USA
Xiaoyu Zeng
Affiliation:
Department of Physics and Astronomy, Kinard Laboratory, Clemson University, Clemson, South Carolina 29634, USA
Terry M. Tritt
Affiliation:
Department of Physics and Astronomy, Kinard Laboratory, Clemson University, Clemson, South Carolina 29634, USA
*
a)Address all correspondence to this author. e-mail: gnolas@usf.edu
Get access

Abstract

Double-filled high Fe content skutterudites, BaxYbyFe3CoSb12 (x + y = 1), were synthesized to investigate their high temperature transport properties. Both their phase and stoichiometry were characterized by powder x-ray diffraction and energy dispersive spectroscopy. The Seebeck coefficient, S, and electrical resistivity, ρ, increase with increasing temperature for all specimens over the entire measured temperature range. The thermal conductivity for the two low Ba content specimens decreases with increasing temperature up to 550 K at which point it increases with temperature due to bipolar diffusion. Bipolar diffusion becomes negligible with increasing Ba content. Due to this low bipolar diffusion, the ZT values of the higher Ba content specimens increase linearly with temperature, with the highest ZT value obtained for Ba0.9Yb0.1Fe3CoSb12.

Type
Invited Review
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Mahan, G.D.: Good thermoelectrics. Solid State Phys. 51, 81 (1998).Google Scholar
Nolas, G.S., Sharp, J.W., and Goldsmid, H.J.: Thermoelectrics: Basics Principles and New Materials Developments (Springer-Verlag, Berlin, Germany, 2001).Google Scholar
Tritt, T.M.: Thermoelectric phenomena, materials, and applications. Annu. Rev. Mater. Res. 41, 433 (2011).Google Scholar
Nolas, G.S., Poon, J., and Kanatzidis, M.G.: Recent developments in bulk thermoelectric materials. MRS Bull. 31, 199 (2006).Google Scholar
Nolas, G.S., Morelli, D.T., and Tritt, T.M.: Skurrerudites: A phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications. Annu. Rev. Mater. Sci. 29, 89 (1999).CrossRefGoogle Scholar
Uher, C.: Skutterudites: Prospective novel thermoelectrics. Semicond. Semimetals 69, 139 (2001).Google Scholar
Nolas, G.S., Slack, G.A., Morelli, D.T., Tritt, T.M., and Ehrlich, A.C.: The effect of rare-earth filling on the lattice thermal conductivity of skutterudites. J. Appl. Phys. 79, 4002 (1996).Google Scholar
Morelli, D.T. and Meisner, G.P.: Low temperature properties of the filled skutterudite CeFe4Sb12. J. Appl. Phys. 77, 3777 (1995).Google Scholar
Shi, X., Yang, J., Salvador, J.R., Chi, M., Cho, J.Y., Wang, H., Bai, S., Yang, J., Zhang, W., and Chen, L.: Multiple-filled Skutterudites: High thermoelectric figure of merit through separately optimizing electrical and thermal transports. J. Am. Chem. Soc. 133, 7837 (2011).Google Scholar
Choi, S., Kurosaki, K., Ohishi, Y., Muta, H., and Yamanaka, S.: Thermoelectric properties of Tl-filled Co-free p-type skutterudites: Tl x (Fe,Ni)4Sb12. J. Appl. Phys. 115, 023702 (2014).Google Scholar
Dong, Y., Puneet, P., Tritt, T.M., and Nolas, G.S.: Crystal structure and high temperature transport properties of Yb-filled p-type skutterudites YbxCo2.5Fe1.5Sb12. J. Solid State Chem. 209, 1 (2014).Google Scholar
Tan, G., Zheng, Y., Yan, Y., and Tang, X.: Preparation and thermoelectric properties of p-type filled skutterudites CeyFe4-xNixSb12. J. Alloys Compd. 584, 216 (2014).CrossRefGoogle Scholar
Kim, D., Kurosaki, K., Ohishi, Y., Muta, H., and Yamanaka, S.: How thermoelectric properties of p-type Tl-filled skutterudites are improved. APL Mater. 1, 032115 (2013).Google Scholar
Tan, G., Liu, W., Chi, H., Su, X., Wang, S., Yan, Y., Tang, X., Wong-Ng, W., and Uher, C.: Realization of high thermoelectric performance in p-type unflled ternary skutterudites FeSb2+xTe1−x via band structure modification and significant point defect scattering. Acta Mater. 61, 7693 (2013).Google Scholar
Tan, G., Liu, W., Wang, S., Yan, Y., Li, H., Tang, X., and Uher, C.: Rapid preparation of CeFe4Sb12 skutterudite by melt spinning: Rich nanostructures and high thermoelectric performance. J. Mater. Chem. A 1, 12657 (2013).Google Scholar
Jie, Q., Wang, H., Liu, W., Wang, H., Chen, G., and Ren, Z.: Fast phase formation of double-filled p-type skutterudites by ball-milling and hot-pressing. Phys. Chem. Chem. Phys. 15, 6809 (2013).Google Scholar
Dong, Y., Puneet, P., Tritt, T.M., and Nolas, G.S.: High-temperature thermoelectric properties of p-type skutterudites YbxCo3FeSb12. Phys. Status Solidi RRL 7, 418 (2013).Google Scholar
Yu, J., Zhao, W., Zhou, H., Wei, P., and Zhang, Q.: Rapid preparation and thermoelectric properties of Ba and In double-filled p-type skutterudite bulk materials. Scr. Mater. 68, 643 (2013).Google Scholar
Zhou, L., Qiu, P., Uher, C., Shi, X., and Chen, L.: Thermoelectric properties of p-type YbxLayFe2.7Co1.3Sb12 double-filled skutterudites. Intermetallics 32, 209 (2013).CrossRefGoogle Scholar
Dong, Y., Puneet, P., Tritt, T.M., Martin, J., and Nolas, G.S.: High temperature thermoelectric properties of p-type skutterudites BaxYbyCo4-zFezSb12. J. Appl. Phys. 112, 083718 (2012).Google Scholar
Puneet, P., He, J., Zhu, S., and Tritt, T.M.: Thermoelectric properties and Kondo behavior in indium incorporated p-type Ce0.9Fe3.5Ni0.5Sb12 skutterudites. J. Appl. Phys. 112, 033710 (2012).Google Scholar
Yang, J., Liu, R., Chen, Z., Xi, L., Yang, J., Zhang, W., and Chen, L.: Power factor enhancement in light valence band p-type skutterudites. Appl. Phys. Lett. 101, 022101 (2012).Google Scholar
Cho, J.Y., Ye, Z., Tessema, M.M., Waldo, R.A., Salvador, J.R., Yang, J., Cai, W., and Wang, H.: Thermoelectric properties of p-type skutterudites YbxFe3.5Ni0.5Sb12 (0.8≤x≤1). Acta Mater. 60, 2104 (2012).Google Scholar
Dong, Y., Puneet, P., Tritt, T.M., and Nolas, G.S.: High-temperature thermoelectric properties of p-type skutterudites Ba0.15YbxCo3FeSb12 and YbyCo3FeSb9As3. J. Mater. Sci. 50, 34 (2015).Google Scholar
Rogl, G., Grytsiv, A., Rogl, P., Bauer, E., and Zehetbauer, M.: A new generation of p-type didymium skutterudites with high ZT. Intermetallics 19, 546 (2011).CrossRefGoogle Scholar
Rogl, G., Grytsiv, A., Rogl, P., Bauer, E., Hochenhofer, M., Anbalagan, R., Mallik, R.C., and Schafler, E.: Nanostructuring of p- and n-type skutterudites reaching figure of merit of approximately 1.3 and 1.6, respectively. Acta Mater. 76, 434 (2014).Google Scholar
Nolas, G.S. and Fowler, G.: Partial filling of skutterudites: Optimization for thermoelectric applications. J. Mater. Res. 20, 3234 (2005).Google Scholar
Nolas, G.S., Kaeser, M., Littleton, R.T. IV, and Tritt, T.M.: High figure of merit in partially filled ytterbium skutterudite materials. Appl. Phys. Lett. 77, 1855 (2000).Google Scholar
Dilley, N.R., Freeman, E.J., Bauer, E.D., and Maple, M.B.: Intermediate valence in the skutterudite compound YbFe4Sb12. Phys. Rev. B 58, 6287 (1998).Google Scholar
Lamberton, G.A. Jr., Tedstrom, R.H., Tritt, T.M., and Nolas, G.S.: Thermoelectric properties of Yb-filled Ge-compensated CoSb3 skutterudite materials. J. Appl. Phys. 97, 113715 (2005).Google Scholar
Salvador, J.R., Yang, J., Shi, X., Wang, H., Wereszczak, A.A., Kong, H., and Uher, C.: Transport and mechanical properties of Yb-filled skutterudites. Philos. Mag. 89, 1517 (2009).CrossRefGoogle Scholar
Grytsiv, A., Rogl, P., Michor, H., Bauer, E., and Giester, G.: InyCo4Sb12 skutterudite: Phase equilibria and crystal structure. J. Electron. Mater. 42, 2940 (2013).Google Scholar
Kraus, W. and Nolze, G.: POWDER CELL—A program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Crystallogr. 29, 301 (1996).Google Scholar
Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A 32, 751 (1976).Google Scholar
Qiu, P.F., Yang, J., Liu, R.H., Shi, X., Huang, X.Y., Snyder, G.J., Zhang, W., and Chen, L.D.: High-temperature electrical and thermal transport properties of fully filled skutterudites RFe4Sb12 (R = Ca, Sr, Ba, La, Ce, Pr, Nd, Eu, and Yb). J. Appl. Phys. 109, 063713 (2011).Google Scholar
Dyck, J.S., Chen, W., Uher, C., Chen, L., Tang, X., and Hirai, T.: Thermoelectric properties of the n-type filled skutterudite Ba0.3Co4Sb14 doped with Ni. J. Appl. Phys. 91, 3698 (2002).Google Scholar
Berman, R.: Thermal Conductivity in Solids (Clarendon Press, Oxford, 1976).Google Scholar