Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T21:37:43.776Z Has data issue: false hasContentIssue false

Evolution of Waterways and Early Human Settlements in the Eastern Baltic Area: Radiocarbon-Based Chronology

Published online by Cambridge University Press:  18 July 2016

P M Dolukhanov*
Affiliation:
School of Historical Studies, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
A M Shukurov
Affiliation:
School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
Kh A Arslanov
Affiliation:
Institute of Geography, St. Petersburg State University, Russia
D A Subetto
Affiliation:
Institute of Limnology, Russian Academy of Sciences, St. Petersburg, Russia Novgorod State University, Novgorod, Russia
G I Zaitseva
Affiliation:
Institute for History of Material Culture, Russian Academy of Sciences, St. Petersburg, Russia
E N Djinoridze
Affiliation:
Institute of Geography, St. Petersburg State University, Russia
D D Kuznetsov
Affiliation:
Institute of Limnology, Russian Academy of Sciences, St. Petersburg, Russia
A V Ludikova
Affiliation:
Institute of Limnology, Russian Academy of Sciences, St. Petersburg, Russia
T V Sapelko
Affiliation:
Institute of Limnology, Russian Academy of Sciences, St. Petersburg, Russia
L A Savelieva
Affiliation:
Institute of Geography, St. Petersburg State University, Russia
*
Corresponding author. Email: pavel.dolukhanov@ncl.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Newly obtained radiocarbon measurements are used to suggest that the initial settlement of the northeastern Baltic area was largely controlled by the Ladoga-Baltic waterway in the north of the Karelian Isthmus, which emerged ∼11,500 cal BP and remained in action for ∼7000 yr. The transgression of Ladoga Lake started ∼5000 cal BP and reached its maximum at ∼3000 cal BP (∼1100–1000 cal BC). The formation of a new outlet via the Neva River led to a rapid regression of the lake that stimulated the spread of farming populations.

Type
Articles
Copyright
Copyright © 2007 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Arslanov, KhA, Tertychnaya, TU, Chernov, SB. 1993. Problems and methods of dating low-activity samples by liquid scintillation counting. Radiocarbon 35(3): 393–8.CrossRefGoogle Scholar
Arslanov, KhA, Dzhinoridze, RN, Chernov, SB, Savelyeva, LA, Subetto, DA, Tertychanaya, TV. 1996. New data on Early Holocene basins of the Baltic on the Karelian Isthmus [abstract]. In: 11th International Workshop on Isotope-Geochemical Research in Baltic Region. Abstracts. 14–16 March 1996, Estonia. p 2.Google Scholar
Björck, S. 1995. A review of the history of the Baltic Sea, 13.0–8.0 ka BP. Quaternary International 27:1940.CrossRefGoogle Scholar
Björck, S, Svensson, N-O. 1994. Östersjöns och Västerhavets utveckling. In: Fredén, C, editor. Berg och Jord. Sveriges Nationalatlas. Höganäs: Bra Böcker. p 138–42. In Swedish.Google Scholar
Bronk Ramsey, C. 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37(2):425–30.CrossRefGoogle Scholar
Bronk Ramsey, C. 2001. Development of the radiocarbon calibration program. Radiocarbon 43(2A):355–63.CrossRefGoogle Scholar
Bronk Ramsey, C. 2007. Deposition models for chronological records. Quaternary Science Reviews. (INTIMATE special issue). Preprint. Available online at http://c14.arch.ox.ac.uk/getPreprint.php?File=Bronkŕmsey2007.pdf.Google Scholar
Dolukhanov, PM. 1979. Leningrad and Soviet Karelia. In: Gudelis, V, Königsson, L-K, editors. The Quaternary History of the Baltic. Acta Universitet Uppsalensis Symposia I. Uppsala: Uppsala University. p 115–26.Google Scholar
Eronen, M. 1974. The history of the Litorina Sea and associated Holocene events. Societas Scientiarum Fennica, Commentationes Physico-Mathematicae 44:79195.Google Scholar
Matiskainen, H. 1989. Studies in Chronology, Material Culture and Subsistence of the Finnish Mesolithic, 10,000–6000 BP. Helsinki: Iksos. 120 p.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Hogg, AG, Hughen, KA, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1029–58.Google Scholar
Saarnisto, M. 1970. The Late Weichselian and Flandrian history of the Saimaa Lake complex. Societas Scientiarium Fennicae, Commentationes Physico-Mathematicae 37:1107.Google Scholar
Subetto, DA. 2003. Ozernyi sedimentogenez severa evropeiskoi chasti Rossii v pozdnem Pleistocene i Golocene [PhD dissertation abstract]. St. Petersburg: Institute for Limnology. 32 p. In Russian.Google Scholar
Tikkanen, M, Oksanen, J, Seppä, H. 1999. GIS-based mapping of Holocene shoreline displacement history of the Baltic Sea in Finland [abstract]. In: International Union for Quaternary Research, XV International Congress. 3–11 August 1999. Durban, South Africa. Book of Abstracts. p 180.Google Scholar
Yushkova, MA. 2003. Raskopki poseleniya rannego metalla Shkurkina Gorka v 2002 godu. In: Machinsky, DA, editor. Ladoga, Pervaya Sgtolitsa Rusi. St. Petersburg: Nestor-Istorik. p 1236. In Russian.Google Scholar