Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T22:08:47.739Z Has data issue: false hasContentIssue false

The Quasioptical Gyrotron, A High-Power, Tunable Source of Millimeter-Wave Radiation

Published online by Cambridge University Press:  15 February 2011

Arne W. Fliflet
Affiliation:
Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375–5320
Richard P. Fischer
Affiliation:
Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375–5320
Get access

Abstract

This talk will summarize the present state of the art of the quasioptical gyrotron (QOG), an alternative gyrotron configuration which has been under development primarily in the U.S. and Switzerland for heating fusion plasmas in tokamaks and other high-power millimeter-wave applications. The QOG features an open-mirror Fabry-Perot resonator instead of the conventional waveguide cavity used in conventional gyrotrons. This gives the QOG the potential for wide tunability, advantages for high-power operation, and facilitates the use of a depressed collector for spent electron beam energy recovery. An experimental QOG has been tuned from 85 to 130 GHz by varying the applied magnetic field. QOGs have produced peak powers up to 600 kW for 13 μs pulses and 100 kW for 10 ms pulses. Electronic efficiencies up to 22% have been achieved at 85 GHz, and operation with a depressed collector yielded an overall efficiency of 30%. The design of a multi-kW CW QOG tunable from 80 to 120 GHz is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Felch, K., Bier, R., Craig, L.J., Huey, H., Ives, L., Jory, H., Lopez, N., and Spang, S., Int. J. Elect. 61, 701 (1986).Google Scholar
2. Temkin, R.J. and Kreischer, K.E., “High Power Gyrotrons,” this proceedings.Google Scholar
3. Sprangle, P., Vomvoridis, J., and Manheimer, W.M., Appl. Phys. Lett. 38, 310 (1981); Phys. Rev. A 23, 3127 (1981).Google Scholar
4. Zhonghai, Y. and Shenggang, L., Int. J. Elec. 57, 1003 (1984);Google Scholar
Kongyi, X. and Shenggang, L., Int. J. Elec., 1019 (1984).Google Scholar
5. Itoh, Y. and Sagawara, T., Int. J. IR & MM Waves 6, 13 (1985).Google Scholar
6. Hargreaves, T.A., Kim, K.J., McAdoo, J.H., Park, S.Y., Seeley, R.D., and Read, M.E., Int. J. Elec. 57, 977 (1984).Google Scholar
7. Read, M.E., Tran, M.Q., McAdoo, J., and Barsanti, M., Int. J. Elec. 65, 309 (1988).Google Scholar
8. Fliflet, A. W., Hargreaves, T.A., Fischer, R. P., Manheimer, W. M., and Sprangle, P., J. Fusion Energy 9, 31 (1990).Google Scholar
9. Hargreaves, T.A., Fliflet, A.W., Fischer, R.P., Barsanti, M.L., Manheimer, W.M., Levush, B., and Antonsen, T. Jr, Int. J. Electronics, 72, 807 (1992).Google Scholar
10. Fliflet, A.W., Fischer, R.P., and Manheimer, W.M., Phys. Fluids B 5, 2682 (1993).Google Scholar
11. Alberti, S., Tran, M.Q., Hogge, J.P., Tran, T.M., Bondeson, A., Muggii, P., Perenoud, A., JÖdicke, B., and Mathews, H.G., Phys. Fluids B 2, 1654 (1990).Google Scholar
12. Hogge, J.P., Pedrozzi, M., Tran, M.Q., Tran, T.M., Cao, H., and Paris, P.J., Seventieth International Conference on Infrared and Millimeter Waves, Temkin, Richard J., Editor, SPIE Proceedings 1929, 266 (1992).Google Scholar
13. Jòdicke, B., Agosti, G., Mathews, H.-G., Tran, M.Q., Tran, T.M., Hogge, J.P., Cao, H., Alberti, S., Muggii, P., Goodman, T., Mutho, T., Sato, M., Hosokawa, M., Kubo, S., and Ohkubo, K., Fifteenth International Conference on Infrared and Millimeter Waves, Temkin, Richard J., Editor, SPIE Proceedings 1514, 266 (1992).Google Scholar
14. Morse, E.C. and Pyle, R.V., J. Vacuum Sci. and Tech. A 3, 1239 (1985).Google Scholar
15. Itoh, Y., Komuro, M., Hayashi, K., and Sugawara, T., Thirteenth International Conference on Infrared and Millimeter Waves, Temkin, Richard J., Editor, SPIE Proceedings 1039, 277 (1988).Google Scholar
16. Danly, B. G. and Temkin, R. J., Phys. Fluids 29, 561 (1986).Google Scholar
17. Singh, A., Granatstein, V. L., Hazel, G., Saraph, G., Cooperstein, J. M., and Hargreaves, T., Int. J. IR and MM Waves 12, p 323 (1991).Google Scholar
18. Kimrey, H.D. and Janney, M.A., Mat. Res. Sym. Proc. 124, 367 (1988).Google Scholar