Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-16T13:38:22.041Z Has data issue: false hasContentIssue false

Uniaxial Stress Applied To p-Type GaAs/AlGaAs Heterostructures: Influence on Heavy Hole Subbandsau

Published online by Cambridge University Press:  15 February 2011

Ole P. Hansen
Affiliation:
Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
Janus S. Olsen
Affiliation:
Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
W. Kraak
Affiliation:
Institute of Physics. Humboldt University, Invalidenstrasse 110, 10115 Berlin, Germany
B. Saffian
Affiliation:
Institute of Physics. Humboldt University, Invalidenstrasse 110, 10115 Berlin, Germany
N. Minina
Affiliation:
Department of Low Temperature Physics, Moscow State University, Lenin Hills, 119899 Moscow, Russia
A. Savin
Affiliation:
Department of Low Temperature Physics, Moscow State University, Lenin Hills, 119899 Moscow, Russia
Get access

Abstract

Quantum Hall effect and Shubnikov-de Haas oscillations in a 2D hole gas at a p-GaAs/Al0.5Ga0 5As (001) interface show, that under in-plane (110) uniaxial compression a redistribution of carriers between the two spin-splitted subbands of the ground heavy hole state takes place. At the maximal compression of 2.5 kbar the carrier density of the most populated subband is decreased by 18%, while the total carrier density remains almost unchanged. A decrease of the spin-splitting under the uniaxial compression is proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sttrmer, H.L., Schlesinger, Z., Chang, A., Tsui, D.C., Gossard, A.C., and Wiegmann, W., Phys.Rev.Lett. 51 126 (1983)Google Scholar
2. Mendez, E.E., Surface Science 170 561 (1986)Google Scholar
3. Eisenstein, P., Stbrmer, H.L., Narayanamurti, V., Gossard., A.C. and Wiegmann., W. Phys.Rev.Lett. 53 2579 (1984)Google Scholar
4. Ekenberg, U. and Altarelli, M., Phys.Rev. B32 3712 (1985)Google Scholar
5. Platero, G. and Altarelli, M., Phys.Rev. B36 6591 (1987)Google Scholar
6. Lee, Johnson and Vassell, M.O., Phys.Rev. B37 8861 (1988)Google Scholar
7. Gil, Bernard, Lefebvre, Pierre, Bonnel, Philippe, Mathieu, Henry, Deparis, Christiane, Massies, Jean, Neu, Gdrard, and Chen, Yong, Phys.Rev. B47 1954 (1993)Google Scholar
8. Paulo Santos, V., Willatzen, M., Cardona, M., and Cantarero, A., Phys.Rev. B51 5121 (1995)Google Scholar
9. Brandt, N.B., Egorov, V.S., Lavrenyuk, M. Yu., Minina, N. Ya., and Savin, A.M.. Sov.Phys. JETP 62 1303 (1985).Google Scholar