Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-29T10:37:32.521Z Has data issue: false hasContentIssue false

Alternative energy production pathways in Taenia crassiceps cysticerci in vitro exposed to a benzimidazole derivative (RCB20)

Published online by Cambridge University Press:  28 December 2015

CAROLINA MIGUEL FRAGA
Affiliation:
Laboratory of Studies of the Host-Parasite Relationship, Tropical Pathology and Public Health Institute, Federal University of Goias
TATIANE LUIZA DA COSTA
Affiliation:
Laboratory of Studies of the Host-Parasite Relationship, Tropical Pathology and Public Health Institute, Federal University of Goias
ANA MARIA DE CASTRO
Affiliation:
Laboratory of Studies of the Host-Parasite Relationship, Tropical Pathology and Public Health Institute, Federal University of Goias
OLIVIA REYNOSO-DUCOING
Affiliation:
Laboratorio de Biologia del Citoesqueleto, Departamento de Microbiologia y Parasitologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico (UNAM), México, DF 04510, Mexico
JAVIER AMBROSIO
Affiliation:
Laboratorio de Biologia del Citoesqueleto, Departamento de Microbiologia y Parasitologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico (UNAM), México, DF 04510, Mexico
ALICIA HERNÁNDEZ-CAMPOS
Affiliation:
Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México (UNAM), México, DF 04510, Mexico
RAFAEL CASTILLO
Affiliation:
Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México (UNAM), México, DF 04510, Mexico
MARINA CLARE VINAUD*
Affiliation:
Laboratory of Studies of the Host-Parasite Relationship, Tropical Pathology and Public Health Institute, Federal University of Goias
*
*Corresponding author: Laboratory of Studies of the Host-Parasite Relationship, Tropical Pathology and Public Health Institute, Federal University of Goias, Rua 235, s/n, Setor Universitário, Goiania, Goias, CEP:74605-050, Brazil. E-mail: marinavinaud@gmail.com

Summary

Biochemical studies of benzimidazole derivatives are important to determine their mode of action and activity against parasites. The lack of antihelminthic alternatives to treat parasitic infections and albendazole resistance cases make the search for new antiparasitary drugs of utmost importance. The 6-chloro-5-(1-naphthyloxy)-2-(trifluoromethyl)-1H-benzimidazole (RCB20) is a benzimidazole derivative with promising effect. This study evaluated the effect of different concentrations of RCB20 in the alternative energetic pathway of in vitro Taenia crassiceps cysticerci. The parasites were in vitro exposed to 6·5 and 13 µm of RCB20 and albendazole sulfoxide (ABZSO). The quantification of acetate, acetoacetate, β-hydroxybutyrate, fumarate and propionate was performed by high-performance liquid chromatography. The quantification of urea, creatinine and total proteins was performed by spectrophotometry. The increase in β-hydroxybutyrate reflects the enhancement of the fatty acid oxidation in the treated groups. Volatile fatty acids secretion, acetate and propionate, was increased in the treated groups. The secretion mechanisms of the treated parasites were impaired due to organic acids increased concentrations in the cysticerci. It is possible to conclude that the metabolic effect on alternative energetic pathways is slightly increased in the parasites treated with RCB20 than the ones treated with ABZSO.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahring, B. K., Sandberg, M. and Angelidaki, I. (1995). Volatile fatty acids as indicators of process imbalance in anaerobic digestors. Applied Microbiology and Biotechnology 43, 559565.Google Scholar
Aragão, S. C., Biondi, G. F., Lima, L. G. and Nunes, C. M. (2010). Animal cysticercosis in indigenous Brazilian villages. Brazilian Journal of Veterinary Parasitology 19, 132134.Google Scholar
Barret, J. (2009). Forty years of helminth biochemistry. Parasitology 136, 16331642.Google Scholar
Barot, K. P., Nikolova, S., Ivanov, I. and Ghate, M. D. (2013). Novel research strategies of benzimidazole derivatives: a review. Mini-Reviews in Medicinal Chemistry 13, 14211447.Google Scholar
Coral-Almeida, M., Gabriël, S., Abatih, E. N., Praet, N., Benitez, W., Dorny, P. (2015). Taenia solium human cysticercosis: a systematic review of sero-epidemological data from endemic zones around the world. PLoS Neglected Tropical Diseases 9, e0003919.Google Scholar
Del Brutto, O. H. (2014). Neurocysticercosis. Handbook of Clinical Neurology 121, 14451459.Google Scholar
Feldmeier, H. (2010). Intestinal helminthiasis. Medizinische Monatsschrift für Pharmazeuten 33, 255260.Google Scholar
Fraga, C. M., Costa, T. L., Bezerra, J. C. B., Lino Junior, R. S. and Vinaud, M. C. (2012 a). Fatty acids oxidation and alternative energy sources detected in Taenia crassiceps cysticerci after host treatment with antihelminthic drugs. Experimental Parasitology 131, 111115.CrossRefGoogle ScholarPubMed
Fraga, C. M., Costa, T. L., Bezerra, J. C. B., Lino Junior, R. S. and Vinaud, M. C. (2012 b). Taenia crassiceps: host treatment alters glycolisis and tricarboxilic acid cycle in cysticerci. Experimental Parasitology 130, 146151.CrossRefGoogle ScholarPubMed
García, A., Leonardi, D., Salazar, M. O. and Lamas, M. C. (2014). Modified β-cyclodextrin inclusion complex to improve the physicochemical properties of albendazole. complete in vitro evaluation and characterization. PLoS ONE 9, e88234.Google Scholar
Geary, T. G. (2012). Are new anthelmintics needed to eliminate human helminthiases? Current Opinion in Infectious Diseases 25, 709717.CrossRefGoogle ScholarPubMed
Hoberg, E. P., Jones, A., Rausch, R. L., Emon, K. S. and Gardner, S. L. (2000). A phylogenetic hypothesis for species of the genus Taenia (Eucestoda: Taeniidae). The Journal of Parasitology 86, 8998.Google Scholar
Lopes, W. D., Cruz, B. C., Soares, V. E., Nunes, J. L., Teixeira, W. F., Maciel, W. G., Buzzulini, C., Pereira, J. C., Felippelli, G., Soccol, V. T., de Oliveira, G. P. and da Costa, A. J. (2014). Historic of therapeutic efficacy of albendazol sulfoxide administered in different routes, dosages and treatment schemes, against Taenia saginata cysticercus in cattle experimentally infected. Experimental Parasitology 137, 1420.Google Scholar
Márquez-Navarro, A., Cornejo-Coria, M., del, C., Cebada-López, F., Sánchez-Manzano, R. M., Díaz-Chiguer, D. L. and Nogueda-Torres, B. (2012). Taenia saginata: failure treatment in a child with 5-year long-lasting infection. Gastroenterology Nursing 35, 125127.Google Scholar
Márquez-Navarro, A., Pérez-Reyes, A., Zepeda-Rodrigues, A., Reynoso-Ducoing, O., Hernández-Campos, A., Hernández-Luis, F., Castillo, R., Yépez-Muli, A. L. and Ambrosio, J. R. (2013). RCB20, an experimental benzimidazole derivative, affects tubulin expression and induces gross anatomical changes in Taenia crassiceps cysticerci. Parasitology Research 112, 22152226.CrossRefGoogle ScholarPubMed
Matadamas-Martínez, F., Nogueda-Torres, B., Hernández-Campos, A., Hernández-Luis, F., Castillo, R., Mendoza, G., Ambrosio, J. R., Andrés-Antonio, G. and Yépez-Mulia, L. (2013). Analysis of the effect of a 2-(trifluoromethyl)-1H-benzimidazole derivative on Trichinella spiralis muscle larvae. Veterinary Parasitology 194, 193197.Google Scholar
McCracken, R. O. and Stillwell, W. H. (1991). A possible biochemical mode of action for benzimidazole anthelmintics. International Journal for Parasitology 21, 99104.CrossRefGoogle ScholarPubMed
Reichardt, N., Duncan, S. H., Young, P., Belenger, A., Leitch, C. M., Scott, K. P., Flint, H. J. and Louis, P. (2014). Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. The International Society for Microbial Ecology Journal 8, 13231335.Google ScholarPubMed
Rendón, J. L., Del Arenal, I. P., Guevara-Flores, A., Uribe, A. and Mendoza-Hernández, G. (2004). Purification, characterization and kinetic properties of the multifunctional thioredoxin-glutathione reductase from Taenia crassiceps metacestode (cysticerci). Molecular and Biochemical Parasitology 133, 6169.Google Scholar
Rendón, J. L., Del Arenal, I. P., Guevara-Flores, A., Mendonza-Hernández, G. and Pardo, J. P. (2008). Glucose 6-phosphate dehydrogenase from larval Taenia crassiceps (cysticerci): purification and properties. Parasitology Research 102, 13511357.Google Scholar
Scala, A., Pipia, A. P., Dore, F., Sanna, G., Tamponi, C., Marrosu, R., Bandino, E., Carmona, C., Boufana, B. and Varcasia, A. (2015). Epidemiological updates and economic losses due to Taenia hydatigena in sheep from Sardinia, Italy. Parasitology Research 114, 31373143.Google Scholar
Tielens, A. G. M., van Grinsven, K. W. A., Henze, K., van Hellemond, J. J. and Martin, W. (2010). Acetate formation in the energy metabolism of parasitic helminths and protists. International Journal for Parasitology 40, 387397.Google Scholar
Venkatesan, V. (1998). Albendazole. The Journal of Antimicrobial Chemotherapy 4, 145147.Google Scholar
Vinaud, M. C., Lino Junior, R. S. and Bezerra, J. C. B. (2007). Taenia crassiceps organic acids detect in cysticerci. Experimental Parasitology 116, 335339.Google Scholar
Vinaud, M. C., Ferreira, C. S., Lino Junior, R. S. and Bezerra, J. C. B. (2008). Taenia crassiceps: Energetic and respiratory metabolism from cysticerci exposed to praziquantel and albendazole in vitro . Experimental Parasitology 120, 221226.Google Scholar
Vinaud, M. C., Ferreira, C. S., Lino Junior, R. S. and Bezerra, J. C. B. (2009). Taenia crassiceps: fatty acids oxidation and alternative energy source in in vitro cysticerci exposed to anthelminthic drugs. Experimental Parasitology 122, 208211.Google Scholar