Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T08:27:23.389Z Has data issue: false hasContentIssue false

Nanostructured Energetic Materials with Sol-gel Methods

Published online by Cambridge University Press:  01 February 2011

Alexander E. Gash*
Affiliation:
Energetic Materials Center, Lawrence Livermore National Laboratory, Livermore, CA 94551
Joe H. Satcher Jr.
Affiliation:
Energetic Materials Center, Lawrence Livermore National Laboratory, Livermore, CA 94551
Randall L. Simpson
Affiliation:
Energetic Materials Center, Lawrence Livermore National Laboratory, Livermore, CA 94551
Brady J. Clapsaddle
Affiliation:
Energetic Materials Center, Lawrence Livermore National Laboratory, Livermore, CA 94551
*
* LLNL, P.O. Box 808 L-092, Livermore, CA 94551 gash2@llnl.gov; Ph. (925) 423–8618
Get access

Abstract

The utilization of sol-gel chemical methodology to prepare nanostructured energetic materials as well as the concepts of nanoenergetics is described. The preparation and characterization of two totally different compositions is detailed. In one example, nanostructured aerogel and xerogel composites of sol-gel iron (III) oxide and ultra fine grained aluminum (UFG Al) are prepared, characterized, and compared to a conventional micron-sized Fe2O3/Al thermite. The exquisite degree of mixing and intimate nanostructuring of this material is illustrated using transmission and scanning electron microscopies (TEM and SEM). The nanocomposite material has markedly different energy release (burn rate) and thermal properties compared to the conventional composite, results of which will be discussed. Small-scale safety characterization was performed on the nanostructured thermite. The second nanostructured energetic material consists of a nanostructured hydrocarbon resin fuel network with fine ammonium perchlorate (NH4ClO4) oxidizer present.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fried, L.E., Howard, W. M.., Souers, P. C. (1998) Cheetah 2.0 User's Manual Lawrence Livermore National Laboratory.Google Scholar
2. Fischer, S.H., Grubelich, M.C. Proceedings of the 24th International Pyrotechnic Seminar 1998, U.S.A., 231286.Google Scholar
3. Brown, M.E.,, Taylor, S.J. and Tribelhorn, M.J., Propellants, Explosives, and Pyrotechnics 1998, 23, 320327.Google Scholar
4. Shimizu, A. and Saitou, J., Solid State Ionics 1990, 38, 261269.Google Scholar
5. Son, S.F.,, Asay, B.W., Busse, J.R., Jorgensen, B.S., Bockmon, B., Pantoya, M., Proceedings of the 28th International Pyrotechnic Seminar, 2001, Adelaide, Australia, November 4–9, 2001.Google Scholar
6. NANOMATERIALS: Synthesis, Properties, and Applications; Edlestein, A.S.; Cammarata, R.C. Eds.; Institute of Physics, Bristol U.K., 1996.Google Scholar
7. Brinker, C.J., Scherer, G.W. Sol-Gel Science; Academic Press, Inc.: San Diego, CA, 1990.Google Scholar
8. Livage, J.; Henry, M.; Sanchez, C. Prog. Solid St. Chem. 1988, 18, 259.Google Scholar
9. Simpson, R.L.; Tillotson, T.M.; Satcher, J.H. Jr.; Hrubesh, L.W.; Gash, A.E. Proc. Int. Annu. Conf. ICT (31st Energetic Materials), Karlsruhe, Germany, June 27–30, 2000.Google Scholar
10. Gash, A.E.; Simpson, R. L.; Tillotson, T.M.; Satcher, J.H. Jr.; Hrubesh, L.W. Proc. 27th Int. Pyrotech. Semin. Grand Junction, CO, July 15–21, 2000 p. 4153.Google Scholar
11. Tillotson, T.M.; Gash, A.E.; Simpson, R.L.; Hrubesh, L.W.; Thomas, I.M.; Poco, J.F. J. Non-Cryst. Solids 2001, 285, 338345.Google Scholar
12. Gash, A.E.; Tillotson, T.M.; Satcher, J.H. Jr.; Poco, J.F.; Hrubesh, L.W.; Simpson, R.L. Chem. Mater. 2001, 13, 999.Google Scholar
13. Gash, A.E.; Satcher, J.H. Jr.; Simpson, R.L. Chem. Mater. 2003, 15, 3268.Google Scholar
14. Pekala, R.W. J. Mater. Sci., 1989, 24, 3321–3227.Google Scholar
15. Wang, L.L.; Munir, Z.A.; Maximov, Y.M. J. Mater. Sci. 1993, 28, 36933708.Google Scholar
16. Tappan, B.C., Brill, T. Propellants, Explosives, and Pyrotechnics 2003, 28 (2), 72.Google Scholar