Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T07:10:41.033Z Has data issue: false hasContentIssue false

ZnO nano-pillar Resonators with Coaxial Bragg-Reflectors

Published online by Cambridge University Press:  31 January 2011

Rudiger Schmidt-Grund
Affiliation:
Schmidt-Grund@physik.uni-leipzig.de, Universität Leipzig, Institut für Experimentelle Physik II, Leipzig, Germany
Annekatrin Hinkel
Affiliation:
ann.hinkel@gmx.de, Universität Leipzig, Institut für Experimentelle Physik II, Leipzig, Germany
Helena Hilmer
Affiliation:
h.hilmer@physik.uni-leipzig.de, Universität Leipzig, Institut für Experimentelle Physik II, Leipzig, Germany
Jesus Zúñiga-Pérez
Affiliation:
jzp@crhea.cnrs.fr, CRHEA, Valbonne, France
Chris Sturm
Affiliation:
csturm@physik.uni-leipzig.de, Universität Leipzig, Institut für Experimentelle Physik II, Leipzig, Germany
Bernd Rheinländer
Affiliation:
rheinlae@physik.uni-leipzig.de, Universität Leipzig, Institut für Experimentelle Physik II, Leipzig, Germany
Marius Grundmann
Affiliation:
grundmann@physik.uni-leipzig.de, Universität Leipzig, Institut für Experimentelle Physik II, Leipzig, Germany
Get access

Abstract

We demonstrate the growth of lateral concentric BR on ZnO nano-pillars. It opens the opportunity to be used for (i) the enhancement of the lateral confinement in classical pillar-resonators in order to increase the emission rates in the regime of weak exciton-photon coupling (Purcell-effect), (ii) to enhance the exciton-polariton coupling strength in the strong-coupling regime, and (iii) to be used for two-dimensional confinement in free-standing photonic wire resonators. Spatially resolved PL experiments in dependence on the pillar diameter and on the temperature provide strong hints for the ZnO nano-pillar resonator being in the strong-coupling regime. The coupling strength can be estimated to be V = 80 meV.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Vahala, K.J. Nature 424, 839(2003).Google Scholar
[2] Reithmaier, J.P. Semicond. Sci. Technol. 23, 123001(2008).Google Scholar
[3] Weisbuch, C. et al. , J. Lumin. 85, 271(2000).Google Scholar
[4] Kasprzak, J. et al. , J. Europ. Opt. Soc. Rap. Public. 3, 08023(2008). D. Solnyshkov, et al., Appl. Phys. Lett. 94, 011110 (2009).Google Scholar
[5] Weisbuch, C. et al. , Phys. Rev. Lett. 69, 3314(1992).Google Scholar
[6] ecial Issue on Microcavities, edited by Baumberg, J.J. and Viña, L., Semicond. Sci. Technol. 18, 11(2003). Special Issue on Physics of Semiconductor Microcavities, edited by B. Deveaud, Phys. Status Solidi B 242, 11 (2005). A. Kavokin, J.J. Baumberg G. Malpuech, F.P.Laussy Microcavities (Oxford Univ. Press, Oxford, 2008).Google Scholar
[7] , Reitzenstein et al. , Appl. Phys. Lett. 90, 251109(2007). C. Böckler, et al., Appl. Phys. Lett. 92, 091107 (2008). H. Lohmeyer et al., Appl. Phys. Lett. 89, 091107 (2006). K. Sebald, et al., J. Korean. Phys. Soc. 53, 83 (2008). D. Sanvitto et al., Appl. Phys. Lett. 86, 191109 (2005). M. Kahl, et al., Nano Lett. 7, 2897 (2007).Google Scholar
[8] Timpson, A. et al. , J. Mod. Optics 54, 453(2007).Google Scholar
[9] Rivera, et al., Appl. Phys. Lett. 74, 911(1999).Google Scholar
[10] Tartakovskii, I. et al. , Phys. Rev. B 57, R6807 (1998). G. Dasbach, et al., Phys. Rev. B 71, 161308(R) (2005).Google Scholar
[11] Wang, L. Mater. Today 7, 26(2004). G.C. Yi et al., Semicond. Sci. Technol. 20, S22 (2005). M. Grundmann, et al., in: Handbook of Self-Assembled Semiconductor Nanostructures, edited by M. Henini, (Elsevier, Amsterdam, 2008), pp. 293-323.Google Scholar
[12] Zamfirescu, et al., Phys. Rev. B 65, 161205(R) (2002).Google Scholar
[13] Johne, et al., Appl. Phys. Lett. 93, 211105(2008).Google Scholar
[14] , Schmidt-Grund et al. , Appl Phys B 93, 331(2008). R. Shimada, et al., Appl. Phys. Lett. 92, 011127(2008). M. Nakayama, et al., J. Phys. Soc. Jpn. 77, 093705 (2008). M. Mihailovic, et al., Opt. Mater. 31, 532 (2009). F. Médard, et al., Photonics Nanostruct. 7, 26 (2009). R. Schmidt-Grund, et al., AIP Conf. Proc. (2009). C. Sturm, et al., J. Vac. Sci. Technol. B (2009). C. Sturm, et al., in press (2009).Google Scholar
[15] Sun, Z et al. , Phys. Rev. Lett. 100, 156403(2008).Google Scholar
[16] , Schmidt-Grund et al. , Proc. SPIE, 6038, 603827(2005). J. Sellmann, et al., phys. stat. sol. (c) 5, 1240 (2008). H. Hilmer, et al., AIP Conf. Proc. (2009).Google Scholar
[17] Cao, Q. et al. , Adv. Funct. Mater. (2009).Google Scholar
[18] Czekalla, et al., Superlatt. Microstruct. 41, 347(2007).Google Scholar