Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-25T05:33:11.697Z Has data issue: false hasContentIssue false

Searching for Compact Objects in Supernova Remnants: Initial Results

Published online by Cambridge University Press:  19 July 2016

D. L. Kaplan
Affiliation:
Department of Astronomy, 105-24 California Institute of Technology, Pasadena, CA 91125, USA
S. R. Kulkarni
Affiliation:
Department of Astronomy, 105-24 California Institute of Technology, Pasadena, CA 91125, USA
D. A. Frail
Affiliation:
National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801, USA
B. M. Gaensler
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-6, Cambridge, MA 02138, USA
P. O. Slane
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-6, Cambridge, MA 02138, USA
E. V. Gotthelf
Affiliation:
Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Most astronomers now accept that stars more massive than about 9 M explode as supernovae and leave stellar remnants, either neutron stars or black holes. However, less than half of the SNRs within 5 kpc have identified central sources. Here, we discuss a systematic effort to search for compact central sources in the remaining 23 SNRs of this distance-limited sample. As the first part of this survey, we are able to state with some confidence that there are no associated central sources down to a level of one tenth of that of the Cas A central source, LX ≲ 1031 ergs s−1, in four SNRs (G093.3+6.9, G315.4−2.3, G084.2+0.8, and G127.1+0.5). We compare our limits with cooling curves for neutron stars and find that any putative neutron stars in these SNRs must be cooling faster than expected for traditional 1.35 M neutron stars.

Type
Part 3: Pulsars: Surveys and Galactic Distribution
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Arzoumanian, Z., Chernoff, D. F., & Cordes, J. M. 2002, ApJ, 568, 289.Google Scholar
Baade, W., & Zwicky, F. 1934, PNAS, 20, 254.Google Scholar
Barger, A. J., et al. 2003, AJ, 126, 632.Google Scholar
Camilo, F., Kaspi, V. M., Lyne, A. G., Manchester, R. N., Bell, J. F., D'Amico, N., McKay, N. P. F., & Crawford, F. 2000, ApJ, 541, 367.Google Scholar
Gotthelf, E. V., Vasisht, G., Boylan-Kolchin, M., & Torii, K. 2000, ApJ, 542, L37.Google Scholar
Grindlay, J., et al. 2003, Astronomische Nachrichten, 324, 57.CrossRefGoogle Scholar
Hertz, P., & Grindlay, J. E. 1988, AJ, 96, 233.Google Scholar
Hulleman, F., van Kerkwijk, M. H., & Kulkarni, S. R. 2000, Nature, 408, 689.Google Scholar
Hurley, K. 2000, astro-ph/9912061.Google Scholar
Kaplan, D. L., Frail, D. A., Gaensler, B. M., Gotthelf, E. V., Kulkarni, S. R., Slane, P. O., & Nechita, A. 2004, ApJS, in press (astro-ph/0403313).Google Scholar
Mereghetti, S., Chiarlone, L., Israel, G. L., & Stella, L. 2002, in MPE Rep. 278, Neutron Stars, Pulsars, and Supernova Remnants, eds. Becker, W., Lesch, H., & Trümper, J., (Garching: MPE), p. 29.Google Scholar
Pavlov, G. G., Sanwal, D., Garmire, G. P., & Zavlin, V. E. 2002, in ASP Conf. Ser., Vol. 271, Neutron Stars in Supernova Remnants, eds. Slane, P. O., & Gaensler, B. M., p. 247.Google Scholar
Yakovlev, D. G., Gnedin, O. Y., Kaminker, A. D., Levenfish, K. P., & Potekhin, A. Y. 2004, Adv. Sp. Res., 33, 523.Google Scholar