Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T17:44:30.344Z Has data issue: false hasContentIssue false

Simulation study of microring resonator for seawater salinity sensing with weak temperature dependence

Published online by Cambridge University Press:  15 October 2014

Guo-Xiang Li
Affiliation:
Department of Physics, Ocean University of China, Qingdao 266100, P.R. China
Jing Wang
Affiliation:
Department of Physics, Ocean University of China, Qingdao 266100, P.R. China
Hong-Juan Yang
Affiliation:
Department of Physics, Ocean University of China, Qingdao 266100, P.R. China
Zhao-Tang Su
Affiliation:
Department of Physics, Ocean University of China, Qingdao 266100, P.R. China State Key Laboratory of Advanced Optical Communication Systems and Networks, Peking University, Beijing 100871, P.R. China
Shan-Shan Wang*
Affiliation:
Department of Physics, Ocean University of China, Qingdao 266100, P.R. China
Get access

Abstract

A seawater salinity sensor based on microring resonator with weak temperature dependence is proposed, which is coated by MgF2 film with positive thermo-optic coefficient. Temperature dependences of the sensor on fiber diameter, probing wavelength and coating thickness are theoretically investigated and ranges of microfiber diameters for weak temperature dependence are obtained. Under the temperature insensitive condition, sensitivity and detection limit of salinity sensing are studied. By optimizing the parameters of the sensing system, salinity sensitivity and detection limit can reach 0.03 nm/‰ and 0.13‰, respectively. The model presented here may be helpful for developing weak temperature dependence sensors for salinity sensing with high sensitivity, low detection limit and miniaturized sizes.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Shi, L., Xu, Y., Tan, W., Chen, X., Sensors 7, 689 (2007)CrossRef
Xu, F., Horak, P., Brambilla, G., Opt. Express 15, 7888 (2007)CrossRef
Sun, Y., Fan, X., Opt. Express 16, 10254 (2008)CrossRef
Zeng, X., Wu, Y., Hou, C., Bai, J., Yang, G., Opt. Commun. 282, 3817 (2009)CrossRef
Wu, Y., Rao, Y., Chen, Y., Gong, Y., Opt. Express 17, 18142 (2009)CrossRef
Lim, K.S., Harun, S.W., Damanhuri, S.S.A., Jasim, A.A., Tio, C.K., Ahmad, H., Sens. Actuat. A: Phys. 167, 60 (2011)CrossRef
Wang, P., Gu, F., Zhang, L., Tong, L.M., Appl. Opt. 50, G7 (2011)CrossRef
Guo, X., Tong, L.M., Opt. Express 16, 14429 (2008)CrossRef
Xu, F., Brambilla, G., Appl. Phys. Lett. 92, 101126 (2008)CrossRef
Sumetsky, M., Windeler, R.S., Dulashko, Y., Fan, X., Opt. Express 15, 14376 (2007)CrossRef
Brambilla, G., Xu, F., Feng, X., Electron. Lett. 42, 517 (2006)CrossRef
Xu, F., Pruneri, V., Finazzi, V., Brambilla, G., Opt. Express 16, 1062 (2008)CrossRef
Wang, S.S., Wang, J., Li, G.X., Tong, L.M., Appl. Opt. 51, 3017 (2012)CrossRef
Chen, Y., Xu, F., Lu, Y., Opt. Express 19, 22923 (2011)CrossRef
Weber, M.J., Handbook of Optical Materials (CRC Press, Boca Raton, USA, 2003)Google Scholar
Quan, X.H., Fry, E.S., Appl. Opt. 34, 3477 (1995)CrossRef
Chao, C.Y., Guo, L.J., J. Lightwave Technol. 24, 1395 (2006)CrossRef
Tong, L.M., Lou, J.Y., Mazur, E., Opt. Express 12, 1025 (2004)CrossRef
Men, L.Q., Lu, P., Chen, Q.Y., J. Appl. Phys. 103, 053107 (2008)CrossRef
Vienne, G., Grelu, P., Pan, X.Y., Li, Y.H., Tong, L.M., J. Opt. A: Pure Appl. Opt. 10, 025303 (2008)CrossRef
Renner, H., J. Lightwave Technol. 10, 544 (1992)CrossRef
Wu, C., Guan, B.O., Lu, C., Tam, H.Y., Opt. Express 21, 20003 (2011)CrossRef