Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-18T04:10:21.168Z Has data issue: false hasContentIssue false

From holism to compositionality: memes and the evolution of segmentation, syntax, and signification in music and language

Published online by Cambridge University Press:  06 March 2015

STEVEN JAN*
Affiliation:
Department of Music and Drama, University of Huddersfield
*
*Address for correspondence: Dr Steven Jan, Department of Music and Drama, Creative Arts Building, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, United Kingdom. tel: +44 (0) 1484 472 143; e-mail: s.b.jan@hud.ac.uk; web: http://www.hud.ac.uk/ourstaff/profile/index.php?staffuid=smussbj

Abstract

Steven Mithen argues that language evolved from an antecedent he terms “Hmmmmm, [meaning it was] Holistic, manipulative, multi-modal, musical and mimetic”. Owing to certain innate and learned factors, a capacity for segmentation and cross-stream mapping in early Homo sapiens broke the continuous line of Hmmmmm, creating discrete replicated units which, with the initial support of Hmmmmm, eventually became the semantically freighted words of modern language. That which remained after what was a bifurcation of Hmmmmm arguably survived as music, existing as a sound stream segmented into discrete units, although one without the explicit and relatively fixed semantic content of language. All three types of utterance – the parent Hmmmmm, language, and music – are amenable to a memetic interpretation which applies Universal Darwinism to what are understood as language and musical memes. On the basis of Peter Carruthers’ distinction between ‘cognitivism’ and ‘communicativism’ in language, and William Calvin’s theories of cortical information encoding, a framework is hypothesized for the semantic and syntactic associations between, on the one hand, the sonic patterns of language memes (‘lexemes’) and of musical memes (‘musemes’) and, on the other hand, ‘mentalese’ conceptual structures, in Chomsky’s ‘Logical Form’ (LF).

Type
Research Article
Copyright
Copyright © UK Cognitive Linguistics Association 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

references

Adkins, M. (2009). The application of memetic analysis to electroacoustic music. Sonic Ideas, 1(2), 3441.Google Scholar
Agawu, V. K. (1991). Playing with signs: a semiotic interpretation of classic music. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Aiello, L. C., & Dunbar, R. I. M. (1993). Neocortex size, group size, and the evolution of language. Current Anthropology, 34, 184193.CrossRefGoogle Scholar
Allanbrook, W. J. (1992). Two threads through the labyrinth: topic and process in the first movements of K. 332 and K. 333. In Allanbrook, W. J., Levy, J. M., & Mahrt, W. P. (Eds.), Convention in eighteenth- and nineteenth-century music: essays in honor of Leonard G. Ratner (pp. 125171). Stuyvesant, NY: Pendragon Press.Google Scholar
Bickerton, D. (2003). Symbol and structure: a comprehensive framework for language evolution. In Christiansen, M. H. & Kirby, S. (Eds.), Language evolution (pp. 7793). Oxford: Oxford University Press.CrossRefGoogle Scholar
Blackmore, S. J. (1999). The meme machine. Oxford: Oxford University Press.Google Scholar
Blackmore, S. J. (2005). Consciousness: a very short introduction. Oxford: Oxford University Press.CrossRefGoogle Scholar
Boas, H. C., & Sag, I. A. (Eds.) (2012). Sign-based Construction Grammar. Stanford, CA: Center for the Study of Language and Information.Google Scholar
Bohlman, P. V. (2002). World music: a very short introduction. Oxford: Oxford University Press.CrossRefGoogle Scholar
Bonds, M. E. (1991). Wordless rhetoric: musical form and the metaphor of the oration. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Braitenberg, V., & Braitenberg, C. (1979). Geometry of orientation columns in the visual cortex. Biological Cybernetics, 33, 179186.CrossRefGoogle ScholarPubMed
Brown, S., Martinez, M. J., & Parsons, L. M. (2006). Music and language side by side in the brain: a PET study of the generation of melodies and sentences. European Journal of Neuroscience, 23(10), 27912803.CrossRefGoogle Scholar
Burak, Y., & Fiete, I. R. (2009). Accurate path integration in continuous attractor network models of grid cells. PLoS Computational Biology, 5(2), e1000291. Online: doi:10.1371/journal.pcbi.1000291.CrossRefGoogle Scholar
Byros, V. (2009). Towards an ‘archaeology’ of hearing: schemata and eighteenth-century consciousness. Musica Humana, 12, 235306.Google Scholar
Calvin, W. H. (1996). The cerebral code: thinking a thought in the mosaics of the mind. Cambridge, MA: MIT Press.Google Scholar
Cambouropoulos, E. (2001). Melodic cue abstraction, similarity, and category formation: a formal model. Music Perception, 18(3), 347370.CrossRefGoogle Scholar
Caplin, W. E. (2005). On the relation of musical topoi to formal function. Eighteenth-Century Music, 2, 113124.CrossRefGoogle Scholar
Carroll, S. B. (2003). Genetics and the making of Homo Sapiens. Nature, 422(6934), 849857.CrossRefGoogle ScholarPubMed
Carruthers, P. (2002). The cognitive functions of language. Behavioral and Brain Sciences, 25, 657726.CrossRefGoogle ScholarPubMed
Chantler, A. (2006). E.T.A. Hoffmann’s musical aesthetics. Aldershot: Ashgate.Google Scholar
Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, MA: MIT Press.Google Scholar
Clegg, M. (2012). The evolution of the human vocal tract: specialized for speech. In Bannan, N. (Ed.), Music, Language, and Human Evolution (pp. 5880). Oxford: Oxford University Press.CrossRefGoogle Scholar
Cooke, D. (1968). The language of music. Oxford: Oxford University Press.Google Scholar
Cross, I., & Tolbert, E. (2009). Music and meaning. In Hallam, S., Cross, I., & Thaut, M. (Eds.), The Oxford handbook of music psychology (pp. 2434). Oxford: Oxford University Press.Google Scholar
Crystal, D. (Ed.) (2003). The Cambridge encyclopaedia of the English language, 2nd ed. Cambridge: Cambridge University Press.Google Scholar
Darwin, C. (2008 [1859]). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life, Ed. Beer, G.. Oxford: Oxford University Press.Google Scholar
Dawkins, R. (1983). Universal Darwinism. In Bendall, D. S. (Ed.), Evolution from molecules to men (pp. 403425). Cambridge: Cambridge University Press.Google Scholar
Dawkins, R. (1989). The selfish gene, 2nd ed. Oxford: Oxford University Press.Google Scholar
Dawkins, R. (1991). The blind watchmaker. London: Penguin.Google Scholar
Deliège, I. (2000). Listening to a piece of music: a schematization process based on abstracted surface cues. In Greer, D. (Ed.), Musicology and sister disciplines: past, present, future: proceedings of the 16th International Congress of the International Musicological Society, London, 1997 (pp. 7187). Oxford: Oxford University Press.CrossRefGoogle Scholar
Dennett, D. C. (1993). Consciousness explained. London: Penguin.Google Scholar
Dennett, D. C. (1995). Darwin’s dangerous idea: evolution and the meanings of life. London: Penguin.CrossRefGoogle Scholar
Deutsch, D. (1999). Grouping mechanisms in music. In Deutsch, D. (Ed.), The psychology of music, 2nd ed. (pp. 299348). San Diego, CA: Academic Press.CrossRefGoogle Scholar
Dissanayake, E. (2000). Antecedents of the temporal arts in early mother–infant interaction. In Wallin, N. L., Merker, B., & Brown, S. (Eds.), The origins of music (pp. 389410). Cambridge, MA: MIT Press.Google Scholar
Distin, K. (2005). The selfish meme: a critical reassessment. Cambridge: Cambridge University Press.Google Scholar
Doeller, C. F., Barry, C., & Burgess, N. (2010). Evidence for grid cells in a human memory network. Nature, 463, 657661.CrossRefGoogle Scholar
Durham, W. H. (1991). Coevolution: genes, culture, and human diversity. Stanford: Stanford University Press.CrossRefGoogle Scholar
Durrell, M., Kohl, K., & Loftus, G. (2002). Essential German grammar. London: Hodder Arnold.Google Scholar
Fernando, C. T., Szathmáry, E., & Husbands, P. (2012). Selectionist and evolutionary approaches to brain function: a critical appraisal. Frontiers in Computational Neuroscience, 6(24). Online: doi:10.3389/fncom.2012.00024.CrossRefGoogle ScholarPubMed
Fodor, J. A. (1983). The modularity of mind: an essay on faculty psychology. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Foley, R. A. (2012). Music and mosaics: the evolution of human abilities. In Bannan, N. (Ed.), Music, Language, and Human Evolution (pp. 3157). Oxford: Oxford University Press.CrossRefGoogle Scholar
Fuhs, M. C., & Touretzky, D. S. (2006). A spin glass model of path integration in rat medial entorhinal cortex. Journal of Neuroscience, 26(16), 42664276.CrossRefGoogle ScholarPubMed
Gamble, C. (2012). When the words dry up: music and material metaphors half a million years ago. In Bannan, N. (Ed.), Music, Language, and Human Evolution (pp. 81106). Oxford: Oxford University Press.CrossRefGoogle Scholar
Gjerdingen, R. O. (2007). Music in the galant style. New York: Oxford University Press.CrossRefGoogle Scholar
Goldberg, A. E. (2003). Constructions: a new theoretical approach to language. Trends in Cognitive Sciences, 7(5), 219224.CrossRefGoogle ScholarPubMed
Goldberg, A. E. (2013). Constructionist approaches to language. In Hoffmann, T. & Trousdale, G. (Eds.), Handbook of Construction Grammar (pp. 1531). Oxford: Oxford University Press.Google Scholar
Hebb, D. O. (1949). The organization of behavior: a neuropsychological theory. New York: Wiley.Google Scholar
Jan, S. B. (2007). The memetics of music: a neo-Darwinian view of musical structure and culture. Aldershot: Ashgate.Google Scholar
Jan, S. B. (2010). Memesatz contra ursatz: memetic perspectives on the aetiology and evolution of musical structure. Musicae Scientiae, 14(1), 350.CrossRefGoogle Scholar
Jan, S. B. (2011). Music, memory, and memes in the light of Calvinian neuroscience. Music Theory Online, 17(2). Online <http://www.mtosmt.org/issues/mto.11.17.2/mto.11.17.2.jan.html>.CrossRefGoogle Scholar
Jan, S. B. (2013). Using galant schemata as evidence for Universal Darwinism. Interdisciplinary Science Reviews, 38(2), 149168.CrossRefGoogle Scholar
Jan, S.B. (2015). Memetic Perspectives on the Evolution of Tonal Systems. Interdisciplinary Science Reviews, (in press).CrossRefGoogle Scholar
Kirby, S. (2001). Spontaneous evolution of linguistic structure: an iterated learning model of the emergence of regularity and irregularity. IEEE Transactions on Evolutionary Computation, 5(2), 102110.CrossRefGoogle Scholar
Kirby, S. (2007). The evolution of language. In Dunbar, R. I. M. & Barrett, L. (Eds.), Oxford handbook of evolutionary psychology (pp. 669681). Oxford: Oxford University Press.Google Scholar
Kirby, S. (2013). Transitions: the evolution of linguistic replicators. In Binder, P. M. & Smith, K. (Eds.), The language phenomenon: human communication from milliseconds to millennia (pp. 121138). Berlin & Heidelberg: Springer.CrossRefGoogle Scholar
Kramer, L. (2002). Musical meaning: toward a critical history. Berkeley & Los Angeles: University of California Press.Google Scholar
Leman, M. (1995). Music and schema theory: cognitive foundations of systematic musicology. Berlin & Heidelberg: Springer.CrossRefGoogle Scholar
Leman, M. (2008). Embodied music cognition and mediation technology. Cambridge, MA & London: MIT Press.Google Scholar
Leng, X., & Shaw, G. L. (1991). Toward a neural theory of higher brain function using music as a window. Concepts in Neuroscience, 2, 229258.Google Scholar
Leng, X., Wright, E. L., & Shaw, G. L. (1990). Coding of musical structure and the trion model of cortex. Music Perception, 8, 4962.CrossRefGoogle Scholar
Lerdahl, F. (1992). Cognitive constraints on compositional systems. Contemporary Music Review, 6(2), 97121.CrossRefGoogle Scholar
Lerdahl, F., & Jackendoff, R. (1983). A generative theory of tonal music. Cambridge, MA: MIT Press.Google Scholar
Lynch, A. (1998). Units, events and dynamics in memetic evolution. Journal of Memetics – Evolutionary Models of Information Transmission, 2. Online: <http://jom-emit.cfpm.org/1998/vol2/lynch_a.html>Google Scholar
Matyja, J. R., & Schiavio, A. (2013). Enactive music cognition: background and research themes. Constructivist Foundations, 8(3), 351357.Google Scholar
Merker, B. (2002). Music: the missing Humboldt system. Musicae Scientiae, 6, 321.CrossRefGoogle Scholar
Merker, B. (2012). The vocal learning constellation: imitation, ritual culture, encephalization. In Bannan, N. (Ed.), Music, Language, and Human Evolution (pp. 215260). Oxford: Oxford University Press.CrossRefGoogle Scholar
Meyer, L. B. (1956). Emotion and meaning in music. Chicago: University of Chicago Press.Google Scholar
Meyer, L. B. (1996). Style and music: theory, history, and ideology. Chicago: University of Chicago Press.Google Scholar
Mhatre, H., Gorchetchnikov, A., & Grossberg, S. (2012). Grid cell hexagonal patterns formed by fast self-organized learning within entorhinal cortex. Hippocampus, 22(2), 320334.CrossRefGoogle ScholarPubMed
Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological Review, 63(2), 8197.CrossRefGoogle ScholarPubMed
Miller, J., & Van Loon, B. (2010). Introducing Darwin: a graphic guide. London: Icon Books.Google Scholar
Mithen, S. (2006). The singing neanderthals: the origins of music, language, mind and body. London: Weidenfeld & Nicolson.Google Scholar
Monelle, R. (2006). The musical topic: hunt, military and pastoral. Bloomington, IN: Indiana University Press.Google Scholar
Morley, I. (2012). Hominin physiological evolution and the emergence of musical capacities. In Bannan, N. (Ed.), Music, Language, and Human Evolution (pp. 109141). Oxford: Oxford University Press.CrossRefGoogle Scholar
Mountcastle, V. B. (1978). An organizing principle for cerebral function: the unit module and the distributed system. In Edelman, G. M. & Mountcastle, V. B. (Eds.), The mindful brain: cortical organization and the group-selective theory of higher brain function (pp. 750). Cambridge, MA: MIT Press.Google Scholar
Narmour, E. (1989). The ‘Genetic Code’ of melody: cognitive structures generated by the implication-realization model. Contemporary Music Review, 4(1), 4563.CrossRefGoogle Scholar
Narmour, E. (1990). The analysis and cognition of basic melodic structures: the implication-realization model. Chicago: University of Chicago Press.Google Scholar
Nattiez, J.-J. (1990). Music and discourse: toward a semiology of music, trans. Abbate, C.. Princeton, NJ: Princeton University Press.Google Scholar
Patel, A. D. (2008). Music, language, and the brain. New York: Oxford University Press.Google Scholar
Pinker, S. (1997). How the mind works. New York: Norton.Google Scholar
Ratner, L. G. (1980). Classic music: expression, form, and style. New York: Schirmer.Google Scholar
Ratner, L. G. (1991). Topical content in Mozart’s keyboard sonatas. Early Music, 19, 615619.CrossRefGoogle Scholar
Reichl, L., Heide, D., Löwel, S., Crowley, J. C., Kaschube, M., & Wolf, F. (2012a). Coordinated optimization of visual cortical maps (I) symmetry-based analysis. PLoS Computational Biology, 8(11), e1002466. Online: doi:10.1371/journal.pcbi.1002466.CrossRefGoogle ScholarPubMed
Reichl, L., Heide, D., Löwel, S., Crowley, J. C., Kaschube, M., & Wolf, F. (2012b). Coordinated optimization of visual cortical maps (II) numerical studies. PLoS Computational Biology, 8(11), e1002756. Online: doi:10.1371/journal.pcbi.1002756.CrossRefGoogle ScholarPubMed
Rice, T. J. (1997). Joyce, chaos, and complexity. Urbana & Chicago: University of Illinois Press.Google Scholar
Schenker, H. (1979). Free composition, Ed. Oster, E.. New York: Longman.Google Scholar
Scott-Phillips, T. C., & Kirby, S. (2010). Language evolution in the laboratory. Trends in Cognitive Sciences, 14, 411417.CrossRefGoogle ScholarPubMed
Scruton, R. (1997). The aesthetics of music. New York: Oxford University Press.Google Scholar
Shapiro, L. A. (2011). Embodied cognition. London: Routledge.Google Scholar
Snyder, B. (2000). Music and memory: an introduction. Cambridge, MA: MIT Press.Google Scholar
Snyder, B. (2009). Memory for music. In Hallam, S., Cross, I., & Thaut, M. (Eds.), The Oxford handbook of music psychology (pp. 107117). Oxford: Oxford University Press.Google Scholar
Stensola, H., Stensola, T., Solstad, T., Frøland, K., Moser, M.-B., & Moser, E. I. (2012). The entorhinal grid map is discretized. Nature, 492, 7278.CrossRefGoogle ScholarPubMed
Strunk, W. O., Treitler, L., & Solie, R. A. (Eds.) (1998). Source readings in music history: the nineteenth century, Vol. 6. New York: Norton.Google Scholar
Tagg, P. (1999). Introductory notes to the semiotics of music, Version 3. Online: <http://www.tagg.org/xpdfs/semiotug.pdf>..>Google Scholar
Temperley, D. (2001). The cognition of basic musical structures. Cambridge, MA: MIT Press.Google Scholar
Tolbert, E. (2001). Music and meaning: an evolutionary story. Psychology of Music, 29, 8494.CrossRefGoogle Scholar
Truss, L. (2003). Eats, shoots and leaves: the zero tolerance approach to punctuation. London: Profile.Google Scholar
Velardo, V. (2015). The sound/music dilemma: Why is it that all music is sound but only some sounds are music? In Proceedings of The Sound Ambiguity Conference 2014 . Wrocław: Publishing House of the Karol Lipiński Academy of Music.Google Scholar
Whorf, B. L. (1956). Language, thought, and reality: selected writings. Cambridge, MA: MIT Press.Google Scholar
Wray, A. (1998). Protolanguage as a holistic system for social interaction. Language and Communication, 18(1), 4767.CrossRefGoogle Scholar
Zatorre, R. J. (2003). Neural specializations for tonal processing. In Peretz, I. & Zatorre, R. J. (Eds.), The cognitive neuroscience of music (pp. 231246). Oxford: Oxford University Press.CrossRefGoogle Scholar