Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T21:29:12.041Z Has data issue: false hasContentIssue false

Buried Metal/III-V Semiconductor Heteroepitaxy: Approaches to Lattice Matching

Published online by Cambridge University Press:  28 February 2011

C.J. PalmstrØM
Affiliation:
Bellcore, 331 Newman Springs Road, Red Bank, NJ 07701-7040
J. P. Harbison
Affiliation:
Bellcore, 331 Newman Springs Road, Red Bank, NJ 07701-7040
T. Sands
Affiliation:
Bellcore, 331 Newman Springs Road, Red Bank, NJ 07701-7040
R. Ramesh
Affiliation:
Bellcore, 331 Newman Springs Road, Red Bank, NJ 07701-7040
T. G. Finstad
Affiliation:
Bellcore, 331 Newman Springs Road, Red Bank, NJ 07701-7040
S. Mounier
Affiliation:
Bellcore, 331 Newman Springs Road, Red Bank, NJ 07701-7040
J.G. Zhu
Affiliation:
Cornell University, Department of Materials Science and Engineering, Bard Hall, Ithaca, NY 14853
C.B. Carter
Affiliation:
Cornell University, Department of Materials Science and Engineering, Bard Hall, Ithaca, NY 14853
L.T. Florez
Affiliation:
Bellcore, 331 Newman Springs Road, Red Bank, NJ 07701-7040
V.G. Keramidas
Affiliation:
Bellcore, 331 Newman Springs Road, Red Bank, NJ 07701-7040
Get access

Abstract

Metallic transition metal aluminides and gallides with the CsCI structure and semi-metallic rare earth monopnictides with the NaCi structure have been grown as buried conducting layers in III-V compound semiconductor heterostructures. The criteria for achieving (100) oriented epitaxial growth on (100)111-V semiconductor surfaces is different for each class of materials. The methods used to achieve III-V/metal/llI-V heteroepitaxial structures are discussed here with emphasis on the different approaches needed for the aluminides or gallides and the monopnictides. Work producing exact lattice matching between the buried metal and surrounding semiconductor layers makes possible the separation of lattice mismatch effects from those due to other interface parameters. Results to date indicate that defect structures in the overgrown semiconductor layers arise more because of differences in crystal symmetry, interface chemistry and bonding across the interface than lattice mismatch.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Villars, P. and Calvert, L.D., Pearson's Handbook of Crvstallosraohic Data for Intermetallic Phases, (American Society for Metals, Metals Park, Ohio, 1985). Vols. 2&3.Google Scholar
2. Palmstrcm, C.J., Mounier, S., Finstad, T.G. and Miceli, P.F., AppI. Phys. Lett. 58 382 (1990).Google Scholar
3. Core, A.I.Le, Caulet, J., and Guivarc'h, A., AppI. Phys. Lett., 55, 2298 (1989).10.1063/1.102043Google Scholar
4. Guivare'h, A., Con'e, A. Le, Caulet, J., Guenais, B., Minier, M., Ropars, G., Badoz, P.A., and Duboz, J.Y., Mater. Res. Soc. Symp. Proc., 160, 331 (1990).10.1557/PROC-160-331Google Scholar
5. Core, A. Le, Guenais, B., Guiverc'h, A., Lecrosnier, D., Caulet, J., Minier, M., Ropars, G., Badoz, P.A., and Duboz, J.Y., “Epitaxial Growth of Lattice Matched Metallic ErP0.6 As0.4on (001) and (111) GaAs with a GSMBE System”, to be published in the proceedings of the CBE conference in Boston, December 1989.Google Scholar
6. Guivare'h, A., Caulet, J., and Corre, A. Le, Electronics Letters. 25, 1050 (1989).10.1049/el:19890702Google Scholar
7. Palmstrèm, C.J., Fimland, B.-O., Sands, T., Garrison, K.C., and Barsynski, R.A., J. AppI. Phys., 65, 4753 (1989).10.1063/1.343228Google Scholar
8. Palmstrem, C.J., Garrison, K.C., Fimland, B.-O., Sands, T., and Bartynski, R.A., “Fabrication and Electrical Properties of MBE Grown Metal-Gallium and Metal-Arsenic Compounds on Gal−xAl−xAS”, to be published 162 in the Proceedings of the Fall 1988 MRS meeting, Boston, November-December 1988.Google Scholar
9. Baugh, D.A., Kim, Y.K., and Williams, R.S., paper presented at the 119th TMS Ann. Meeting, Anaheim, CA, February 18-22, 1990.Google Scholar
10. Guivarc'h, A., Gudin, R., and Seeoué, M., Electronics Letters, 23, 1004 (1987).10.1049/el:19870704Google Scholar
11. Sands, T., Harbison, J.P., Chan, W.K., Schwarz, S.A., Chang, C.C., Palmstrom, C.J., and Keramidas, V.G., Appl. Phys. Lett., 2, 1216 (1988).Google Scholar
12. Sands, T., Harbison, J.P., Ramesh, R., Palmstrom, C.J., Florez, L.T., and Keramidas, V.G., Mater. Sci. and Eng., B7, 147 (1990).10.1016/0921-5107(90)90091-OGoogle Scholar
13. Chambers, S.Y., J. Vac. Sci. Technol., B7, 737 (1989).10.1116/1.584636Google Scholar
14. Wowchak, A.M., Kuznia, J.N., and Cohen, P.I., J. Vac. Sci. Technol., B7, 733 (1989).10.1116/1.584635Google Scholar
15. Harbison, J.P., Sands, T., Ramesh, R., Tabatabaie, N., Gilchrist, H.L., Florez, L.T., and Keramidas, V.G., J. Vac. Sci. Technol., B8, 242 (1990)Google Scholar
16. Palmstrom, C.J., Tabatabaie, N., and Allen, S.J. Jr., Appl. Phys. Lett., 52, 2608 (1989).Google Scholar
17. Palmstrom, C.J., Garrison, K.C., Mounier, S., Sands, T., Scwartz, C.L., Tabatabaie, N., Allen, S.J.,Jr., Gilchrist, H.L., and Miceli, P.F., J. Vac. Sci. Technol., B1, 747 (1989).10.1116/1.584638Google Scholar
18. Ralston, J.D., Ennen, H., Wennekers, P., Hiesinger, P., Herres, N., Schneider, J., Muller, H. D., Rothemund, W., Fuchs, F., Schmltlzlin, J., and Thonke, K., “Structural, Electrical and Optical Characterization of Single-Crystal ErAs Layers Grown on GaAs by MBE”, Submitted to J. Electr. Mat.Google Scholar
19. Richter, H.J., Smith, R.S., Herres, N., Seelman-Eggebert, N., and Wennekers, P., Appl. Phys. Lett., 53, 99 (1988).10.1063/1.100361Google Scholar
20. Sands, T., Mater. Sci. and Eng., B1, 289 (1989).Google Scholar
21. Palmstrom, C.J., Chang, C.C., Yu, A.Y., Galvin, G.J., and Mayer, J.W., J. Appl. Phys., 62, 3755 (1987).10.1063/1.339239Google Scholar
22. Shiau, F.-Y., Zuo, Y., Zheng, X.-Y., Lin, J.-C., and Chang, Y.A., Mater. Res. Soc. Symp. Proc., 119, 171 (1988).Google Scholar
23. Lin, J.-C., Zheng, X.-Y., Hsieh, K.-C., and Chang, Y.A., Mater. Res. Soc. Symp. Proc., 102, 233 (1988).10.1557/PROC-102-233Google Scholar
24. Guérin, R. and Guivarc'h, A., J. Appl. Phys., C 2122 (1989).Google Scholar
25. EI-Boragy, M. and Schubert, K., Z. Metallkde, 22, 279 (1981).Google Scholar
26. Lin, J.-C., Hsieh, K.-C., Schulz, K.J., and Chang, Y.A., J. Mater. Res., 3, 148 (1988).Google Scholar
27. EI-Boragy, M. and Schubert, K., Z. Metallkde., 61, 579 (1970).Google Scholar
28. Sands, T., unpublishedGoogle Scholar
29.See Moffatt, W.G., The Handbook of Binary Phase Diagrams, (Genium, Schenectady, NY, 1984); F.A. Shunk, Constitution of Binary Alloys. 2nd. Suppl., (McGraw-Hill, NY 1969); R.P. Elliott, Constitution of Binary Alloys. 1st. Suppl.. (McGraw-Hill, NY 1965); M. Hansen, Constitution of Binary Alloys, (McGraw-Hill, NY 1958).Google Scholar
30. Hanks, R. and Faktor, M.M., Trans. Faraday Soc., 9, 1130 (1967).Google Scholar
31. Borsese, A., Capelli, R., Delfino, S., and Ferro, R., Thermochim. Acta, 2, 313 (1974).Google Scholar
32. Zhu, J.G., Carter, C.B., Palmstrom, C.J., and Garrison, K.C., Appl. Phys. Lett., 55, 39 (1989).10.1063/1.101748Google Scholar
33. Zhu, J.G., Palmstrom, C.J., Garrison, K.C., and Carter, C.B., Inst. of Phys. Conf. Ser. no. 100, 659 (1989).Google Scholar
34. Zhu, J.G., Palmstrom, C.J., Mounier, S., and Carter, C.B., Mater. Res. Soc. Symp. Proc., 160, 325 (1990).10.1557/PROC-160-325Google Scholar
35. Zhu, J.G., Carter, C.B., Palmstrom, C.J. and Mounier, S., Appl. Phys. Leu., 56, 1323 (1990).Google Scholar
36. Brandes, E.A. (ed), Smithells Metals Reference Book, Table 8.5(a), (Butterworths, London, 6th edn., 1983).Google Scholar
37. resistivity, Bulk, Caskey, G.R., Franz, J.M., and Sellmyer, D.J.. J. Phys. Chem. Solids. 34, 1179 (1973).Google Scholar
38. Cheeks, T.L., private communications.Google Scholar
39. Allen, S.J. Jr., private communications.Google Scholar
40. Bonner, W.A., private communications.Google Scholar