Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T01:13:51.668Z Has data issue: false hasContentIssue false

State-dependent microstructural white matter changes in drug-naïve patients with first-episode psychosis

Published online by Cambridge University Press:  22 August 2017

M. H. Serpa*
Affiliation:
Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Centro de Medicina Nuclear, 3o andar, LIM-21, Rua Dr. Ovídio Pires de Campos, s/n, São Paulo, SP, Brazil Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Centro de Medicina Nuclear, 3o andar, LIM-21, Rua Dr. Ovídio Pires de Campos, s/n, São Paulo, SP, Brazil Laboratory of Neuroscience, LIM-27, Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Instituto de Psiquiatria, 3o andar, LIM-27, Rua Dr. Ovídio Pires de Campos, s/n, São Paulo, SP, Brazil
J. Doshi
Affiliation:
Section of Biomedical Image Analysis (SBIA), Department of Radiology, University of Pennsylvania, 3600 Market St, Suite 380, Philadelphia, PA, USA
G. Erus
Affiliation:
Section of Biomedical Image Analysis (SBIA), Department of Radiology, University of Pennsylvania, 3600 Market St, Suite 380, Philadelphia, PA, USA
T. M. Chaim-Avancini
Affiliation:
Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Centro de Medicina Nuclear, 3o andar, LIM-21, Rua Dr. Ovídio Pires de Campos, s/n, São Paulo, SP, Brazil Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Centro de Medicina Nuclear, 3o andar, LIM-21, Rua Dr. Ovídio Pires de Campos, s/n, São Paulo, SP, Brazil
M. Cavallet
Affiliation:
Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Centro de Medicina Nuclear, 3o andar, LIM-21, Rua Dr. Ovídio Pires de Campos, s/n, São Paulo, SP, Brazil Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Centro de Medicina Nuclear, 3o andar, LIM-21, Rua Dr. Ovídio Pires de Campos, s/n, São Paulo, SP, Brazil
M. T. van de Bilt
Affiliation:
Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Centro de Medicina Nuclear, 3o andar, LIM-21, Rua Dr. Ovídio Pires de Campos, s/n, São Paulo, SP, Brazil Laboratory of Neuroscience, LIM-27, Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Instituto de Psiquiatria, 3o andar, LIM-27, Rua Dr. Ovídio Pires de Campos, s/n, São Paulo, SP, Brazil
P. C. Sallet
Affiliation:
Laboratory of Neuroscience, LIM-27, Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Instituto de Psiquiatria, 3o andar, LIM-27, Rua Dr. Ovídio Pires de Campos, s/n, São Paulo, SP, Brazil
W. F. Gattaz
Affiliation:
Laboratory of Neuroscience, LIM-27, Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Instituto de Psiquiatria, 3o andar, LIM-27, Rua Dr. Ovídio Pires de Campos, s/n, São Paulo, SP, Brazil
C. Davatzikos
Affiliation:
Section of Biomedical Image Analysis (SBIA), Department of Radiology, University of Pennsylvania, 3600 Market St, Suite 380, Philadelphia, PA, USA
G. F. Busatto
Affiliation:
Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Centro de Medicina Nuclear, 3o andar, LIM-21, Rua Dr. Ovídio Pires de Campos, s/n, São Paulo, SP, Brazil Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Centro de Medicina Nuclear, 3o andar, LIM-21, Rua Dr. Ovídio Pires de Campos, s/n, São Paulo, SP, Brazil
M. V. Zanetti
Affiliation:
Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Centro de Medicina Nuclear, 3o andar, LIM-21, Rua Dr. Ovídio Pires de Campos, s/n, São Paulo, SP, Brazil Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Centro de Medicina Nuclear, 3o andar, LIM-21, Rua Dr. Ovídio Pires de Campos, s/n, São Paulo, SP, Brazil Laboratory of Neuroscience, LIM-27, Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Instituto de Psiquiatria, 3o andar, LIM-27, Rua Dr. Ovídio Pires de Campos, s/n, São Paulo, SP, Brazil
*
*Address for correspondence: M. H. Serpa, Centro de Medicina Nuclear, 3° andar, LIM-21/Rua Dr. Ovídio Pires de Campos, s/n, Postal code 05403-010, São Paulo, SP, Brazil. (Email: mauricio.serpa@hc.fm.usp.br)

Abstract

Background

Diffusion tensor imaging (DTI) studies have consistently shown white matter (WM) microstructural abnormalities in schizophrenia. Whether or not such alterations could vary depending on clinical status (i.e. acute psychosis v. remission) remains to be investigated.

Methods

Twenty-five treatment-naïve first-episode psychosis (FEP) patients and 51 healthy-controls (HC) underwent MRI scanning at baseline. Twenty-one patients were re-scanned as soon as they achieved sustained remission of symptoms; 36 HC were also scanned twice. Rate-of-change maps of longitudinal DTI changes were calculated for in order to examine WM alterations associated with changes in clinical status. We conducted voxelwise analyses of fractional anisotropy (FA) and trace (TR) maps.

Results

At baseline, FEP presented reductions of FA in comparison with HC [p < 0.05, false-discovery rate (FDR)-corrected] affecting fronto-limbic WM and associative, projective and commissural fasciculi. After symptom remission, patients showed FA increase over time (p < 0.001, uncorrected) in some of the above WM tracts, namely the right anterior thalamic radiation, right uncinate fasciculus/inferior fronto-occipital fasciculus, and left inferior fronto-occipital fasciculus/inferior longitudinal fasciculus. We also found significant correlations between reductions in PANSS scores and FA increases over time (p < 0.05, FDR-corrected).

Conclusions

WM changes affecting brain tracts critical to the integration of perceptual information, cognition and emotions are detectable soon after the onset of FEP and may partially reverse in direct relation to the remission of acute psychotic symptoms. Our findings reinforce the view that WM abnormalities in brain tracts are a key neurobiological feature of acute psychotic disorders, and recovery from such WM pathology can lead to amelioration of symptoms.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, A, Lee, J, Lazar, M, Field, A (2007). Diffusion tensor imaging of the brain. Neurotherapeutics 4, 316329.CrossRefGoogle ScholarPubMed
Allen, P, Modinos, G, Hubl, D, Shields, G, Cachia, A, Jardri, R, Thomas, P, Woodward, T, Shotbolt, P, Plaze, M, Hoffman, R (2012). Neuroimaging auditory hallucinations in schizophrenia: from neuroanatomy to neurochemistry and beyond. Schizophrenia Bulletin 38, 695703.Google Scholar
American Psychiatric Association (1994). Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) , 4th edn., text revision. American Psychiatric Association: Washington.Google Scholar
Andreasen, N, Carpenter, W, Kane, J, Lasser, R, Marder, S, Weinberger, D (2005). Remission in schizophrenia: proposed criteria and rationale for consensus. American Journal of Psychiatry 162, 441449.CrossRefGoogle ScholarPubMed
Andreasen, N, Pressler, M, Nopoulos, P, Miller, D, Ho, B (2010). Antipsychotic dose equivalents and dose-years: a standardized method for comparing exposure to different drugs. Biological Psychiatry 67, 255262.CrossRefGoogle ScholarPubMed
Anticevic, A, Cole, M, Repovs, G, Murray, J, Brumbaugh, M, Winkler, A, Savic, A, Krystal, J, Pearlson, G, Glahn, D (2014). Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness. Cerebral Cortex 24, 31163130.Google Scholar
Ashtari, M, Cottone, J, Ardekani, B, Cervellione, K, Szeszko, P, Wu, J, Chen, S, Kumra, S (2007). Disruption of white matter integrity in the inferior longitudinal fasciculus in adolescents with schizophrenia as revealed by fiber tractography. Archives of General Psychiatry 64, 12701280.CrossRefGoogle ScholarPubMed
Bartzokis, G (2012). Neuroglialpharmacology: myelination as a shared mechanism of action of psychotropic treatments. Neuropharmacology 62, 21372153.Google Scholar
Bates, A, Liddle, P, Kiehl, K, Ngan, ET (2004). State dependent changes in error monitoring in schizophrenia. Journal of Psychiatric Research 38, 347356.Google Scholar
Beaulieu, C (2002). The basis of anisotropic water diffusion in the nervous system – a technical review. NMR in Biomedicine 15, 435455.CrossRefGoogle ScholarPubMed
Bleuler, E (1911). Dementia Praecox or the Group of Schizophrenias. International Universities Press: New York.Google Scholar
Bora, E, Fornito, A, Radua, J, Walterfang, M, Seal, M, Wood, S, Yücel, M, Velakoulis, D, Pantelis, C (2011). Neuroanatomical abnormalities in schizophrenia: a multimodal voxelwise meta-analysis and meta-regression analysis. Schizophrenia Research 127, 4657.Google Scholar
Carletti, F, Woolley, J, Bhattacharyya, S, Perez-Iglesias, R, Fusar-Poli, P, Valmaggia, L, Broome, M, Bramon, E, Johns, L, Giampietro, V, Williams, S, Barker, G, McGuire, P (2012). Alterations in white matter evident before the onset of psychosis. Schizophrenia Bulletin 38, 11701179.Google Scholar
Catani, M, Thiebaut de Schotten, M (2008). A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 44, 11051132.CrossRefGoogle ScholarPubMed
Cheng, Y, Xu, J, Yu, H, Nie, B, Li, N, Luo, C, Li, H, Liu, F, Bai, Y, Shan, B, Xu, L, Xu, X (2014). Delineation of early and later adult onset depression by diffusion tensor imaging. PLoS ONE 9, e112307.Google Scholar
Concha, L, Livy, D, Beaulieu, C, Wheatley, B, Gross, D (2010). In vivo diffusion tensor imaging and histopathology of the fimbria-fornix in temporal lobe epilepsy. Journal of Neuroscience 30, 9961002.Google Scholar
Cookey, J, Bernier, D, Tibbo, P (2014). White matter changes in early phase schizophrenia and cannabis use: an update and systematic review of diffusion tensor imaging studies. Schizophrenia Research 156, 137142.Google Scholar
Ćurčić-Blake, B, Liemburg, E, Vercammen, A, Swart, M, Knegtering, H, Bruggeman, R, Aleman, A (2013). When Broca goes uninformed: reduced information flow to Broca's area in schizophrenia patients with auditory hallucinations. Schizophrenia Bulletin 39, 10871095.Google Scholar
Ćurčić-Blake, B, Nanetti, L, van der Meer, L, Cerliani, L, Renken, R, Pijnenborg, G, Aleman, A (2015). Not on speaking terms: hallucinations and structural network disconnectivity in schizophrenia. Brain Structure & Function 220, 407418.Google Scholar
DeLisi, L (2008). The concept of progressive brain change in schizophrenia: implications for understanding schizophrenia. Schizophrenia Bulletin 34, 312321.Google Scholar
Ebdrup, B, Raghava, J, Nielsen, M, Rostrup, E, Glenthøj, B (2016). Frontal fasciculi and psychotic symptoms in antipsychotic-naive patients with schizophrenia before and after 6 weeks of selective dopamine D2/3 receptor blockade. Journal of Psychiatry & Neuroscience 41, 133141.Google Scholar
Eklund, A, Nichols, T, Knutsson, H (2016). Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proceedings of National Academy of Science of the United States of America 113, 79007905.Google Scholar
Ellison-Wright, I, Bullmore, E (2009). Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophrenia Research 108, 310.Google Scholar
Filippi, M, Canu, E, Gasparotti, R, Agosta, F, Valsecchi, P, Lodoli, G, Galluzzo, A, Comi, G, Sacchetti, E (2014). Patterns of brain structural changes in first-contact, antipsychotic drug-naive patients with schizophrenia. American Journal of Neuroradiology 35, 3037.Google Scholar
First, M, Spitzer, R, Gibbon, M, Williams, J (1995). Structured Clinical Interview for DSM-IV Axis I Disorders, Patient Edition (SCID-I/P) . Biometrics Research, New York State Psychiatry Institute: New York.Google Scholar
Fox, R, Cronin, T, Lin, J, Wang, X, Sakaie, K, Ontaneda, D, Mahmoud, S, Lowe, M, Phillips, M (2011). Measuring myelin repair and axonal loss with diffusion tensor imaging. American Journal of Neuroradiology 32, 8591.CrossRefGoogle ScholarPubMed
Friston, K (1998). The disconnection hypothesis. Schizophrenia Research 30(2), 115125.Google Scholar
Gao, W, Jiao, Q, Qi, R, Zhong, Y, Lu, D, Xiao, Q, Lu, S, Xu, C, Zhang, Y, Liu, X, Yang, F, Lu, G, Su, L (2013). Combined analyses of gray matter voxel-based morphometry and white matter tract-based spatial statistics in pediatric bipolar mania. Journal of Affective Disorders 150, 7076.Google Scholar
Goldberg, T, Ragland, J, Torrey, E, Gold, J, Bigelow, L, Weinberger, D (1990). Neuropsychological assessment of monozygotic twins discordant for schizophrenia. Archives of General Psychiatry 47, 10661072.Google Scholar
Haroutunian, V, Katsel, P, Roussos, P, Davis, KL, Altshuler, LL, Bartzokis, G (2014). Myelination, oligodendrocytes, and serious mental illness. Glia 62, 18561877.Google Scholar
Ho, B, Andreasen, N, Ziebell, S, Pierson, R, Magnotta, V (2011). Long-term antipsychotic treatment and brain volumes: a longitudinal study of first-episode schizophrenia. Archives of General Psychiatry 68, 128137.Google Scholar
Hulshoff Pol, H, Kahn, R (2008). What happens after the first episode? A review of progressive brain changes in chronically ill patients with schizophrenia. Schizophrenia Bulletin 34, 354366.Google Scholar
Itahashi, T, Yamada, T, Nakamura, M, Watanabe, H, Yamagata, B, Jimbo, D, Shioda, S, Kuroda, M, Toriizuka, K, Kato, N, Hashimoto, R (2015). Linked alterations in gray and white matter morphology in adults with high-functioning autism spectrum disorder: a multimodal brain imaging study. NeuroImage: Clinical 7, 155169.CrossRefGoogle ScholarPubMed
Jones, D (2008). Studying connections in the living human brain with diffusion MRI. Cortex 44, 936952.Google Scholar
Jones, D, Cercignani, M (2010). Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomedicine 23, 803820.Google Scholar
Jones, D, Knösche, T, Turner, R (2013). White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI. Neuroimage 73, 239254.Google Scholar
Katagiri, N, Pantelis, C, Nemoto, T, Zalesky, A, Hori, M, Shimoji, K, Saito, J, Ito, S, Dwyer, D, Fukunaga, I, Morita, K, Tsujino, N, Yamaguchi, T, Shiraga, N, Aoki, S, Mizuno, M (2015). A longitudinal study investigating sub-threshold symptoms and white matter changes in individuals with an ‘at risk mental state’ (ARMS). Schizophrenia Research 162, 713.Google Scholar
Kay, S, Fiszbein, A, Opler, L (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin 13, 261276.CrossRefGoogle ScholarPubMed
Keshavan, M, Haas, G, Kahn, C, Aguilar, E, Dick, E, Schooler, N, Sweeney, J, Pettegrew, J (1998). Superior temporal gyrus and the course of early schizophrenia: progressive, static, or reversible? Journal of Psychiatric Research 32, 161167.Google Scholar
Kitis, O, Ozalay, O, Zengin, E, Haznedaroglu, D, Eker, M, Yalvac, D, Oguz, K, Coburn, K, Gonul, A (2012). Reduced left uncinate fasciculus fractional anisotropy in deficit schizophrenia but not in non-deficit schizophrenia. Psychiatry & Clinical Neuroscience 66, 3443.Google Scholar
Klingberg, S, Wittorf, A, Sickinger, S, Buchkremer, G, Wiedemann, G (2008). Course of cognitive functioning during the stabilization phase of schizophrenia. Journal of Psychiatric Research 42, 259267.CrossRefGoogle ScholarPubMed
Kochunov, P, Hong, L (2014). Neurodevelopmental and neurodegenerative models of schizophrenia: white matter at the center stage. Schizophrenia Bulletin 40, 721728.Google Scholar
Kraepelin, E (1919). Morbidity anatomy. In Dementia Praecox and Paraphrenia (ed. Robertson, G. M.), pp. 213223. E. & S. Livingstone: Edinburgh.Google Scholar
Kubota, M, Miyata, J, Sasamoto, A, Sugihara, G, Yoshida, H, Kawada, R, Fujimoto, S, Tanaka, Y, Sawamoto, N, Fukuyama, H, Takahashi, H, Murai, T (2013). Thalamocortical disconnection in the orbitofrontal region associated with cortical thinning in schizophrenia. JAMA Psychiatry 70, 1221.Google Scholar
Lee, S, Kubicki, M, Asami, T, Seidman, L, Goldstein, J, Mesholam-Gately, R, McCarley, R, Shenton, M (2013). Extensive white matter abnormalities in patients with first-episode schizophrenia: a diffusion tensor imaging (DTI) study. Schizophrenia Research 143, 231238.Google Scholar
Lei, W, Li, N, Deng, W, Li, M, Huang, C, Ma, X, Wang, Q, Guo, W, Li, Y, Jiang, L, Zhou, Y, Hu, X, McAlonan, G, Li, T (2015). White matter alterations in first episode treatment-naïve patients with deficit schizophrenia: a combined VBM and DTI study. Scientific Reports 5, 12994.Google Scholar
Levitt, J, Alvarado, J, Nestor, P, Rosow, L, Pelavin, P, McCarley, R, Kubicki, M, Shenton, M (2012). Fractional anisotropy and radial diffusivity: diffusion measures of white matter abnormalities in the anterior limb of the internal capsule in schizophrenia. Schizophrenia Research 136, 5562.Google Scholar
Levitt, J, Kubicki, M, Nestor, P, Ersner-Hershfield, H, Westin, C, Alvarado, J, Kikinis, R, Jolesz, F, McCarley, R, Shenton, M (2010). A diffusion tensor imaging study of the anterior limb of the internal capsule in schizophrenia. Psychiatry Research 184, 143150.Google Scholar
Li, W, Li, Q, Zhu, J, Qin, Y, Zheng, Y, Chang, H, Zhang, D, Wang, H, Wang, L, Wang, Y, Wang, W (2013). White matter impairment in chronic heroin dependence: a quantitative DTI study. Brain Research 1531, 5864.Google Scholar
Lieberman, J, Perkins, D, Belger, A, Chakos, M, Jarskog, F, Boteva, K, Gilmore, J (2001). The early stages of schizophrenia: speculations on pathogenesis, pathophysiology, and therapeutic approaches. Biological Psychiatry 50, 884897.CrossRefGoogle ScholarPubMed
Lim, J, Park, Y, Jang, J, Park, S, Kim, S, Alzheimer's Disease Neuroimaging Initiative (2014). Differential white matter connectivity in early mild cognitive impairment according to CSF biomarkers. PLoS ONE 9, e91400.CrossRefGoogle ScholarPubMed
Lu, S, Wei, Z, Gao, W, Wu, W, Liao, M, Zhang, Y, Li, W, Li, Z, Li, L (2013). White matter integrity alterations in young healthy adults reporting childhood trauma: a diffusion tensor imaging study. Australian & New Zealand Journal of Psychiatry 47, 11831190.Google Scholar
Mamah, D, Conturo, TE, Harms, MP, Akbudak, E, Wang, L, McMichael, AR, Gado, MH, Barch, DM, Csernansky, JG (2010). Anterior thalamic radiation integrity in schizophrenia: a diffusion-tensor imaging study. Psychiatry Research 30, 144150.Google Scholar
Marenco, S, Stein, J, Savostyanova, A, Sambataro, F, Tan, H, Goldman, A, Verchinski, B, Barnett, A, Dickinson, D, Apud, J, Callicott, J, Meyer-Lindenberg, A, Weinberger, D (2012). Investigation of anatomical thalamo-cortical connectivity and FMRI activation in schizophrenia. Neuropsychopharmacology 37, 499507.Google Scholar
Meda, SA, Ruaño, G, Windemuth, A, O'Neil, K, Berwise, C, Dunn, SM, Boccaccio, LE, Narayanan, B, Kocherla, M, Sprooten, E, Keshavan, MS, Tamminga, CA, Sweeney, JA, Clementz, BA, Calhoun, VD, Pearlson, GD (2014). Multivariate analysis reveals genetic associations of the resting default mode network in psychotic bipolar disorder and schizophrenia. Proceedings of National Academy of Science of the United States of America 111, E2066E2075.Google Scholar
Melicher, T, Horacek, J, Hlinka, J, Spaniel, F, Tintera, J, Ibrahim, I, Mikolas, P, Novak, T, Mohr, P, Hoschl, C (2015). White matter changes in first episode psychosis and their relation to the size of sample studied: a DTI study. Schizophrenia Research 162, 2228.CrossRefGoogle Scholar
Menezes, P, Johnson, S, Thornicroft, G, Marshall, J, Prosser, D, Bebbington, P, Kuipers, E (1996). Drug and alcohol problems among individuals with severe mental illness in south London. British Journal of Psychiatry 168, 612619.Google Scholar
Mighdoll, M, Tao, R, Kleinman, J, Hyde, T (2015). Myelin, myelin-related disorders, and psychosis. Schizophrenia Research 161, 8593.Google Scholar
Monji, A, Kato, T, Mizoguchi, Y, Horikawa, H, Seki, Y, Kasai, M, Yamauchi, Y, Yamada, S, Kanba, S (2013). Neuroinflammation in schizophrenia especially focused on the role of microglia. Progress in Neuro-psychopharmacology & Biological Psychiatry 42, 115121.Google Scholar
Mori, T, Ohnishi, T, Hashimoto, R, Nemoto, K, Moriguchi, Y, Noguchi, H, Nakabayashi, T, Hori, H, Harada, S, Saitoh, O, Matsuda, H, Kunugi, H (2007). Progressive changes of white matter integrity in schizophrenia revealed by diffusion tensor imaging. Psychiatry Research 154, 133145.Google Scholar
Mukherjee, P, Chung, S, Berman, J, Hess, C, Henry, R (2008). Diffusion tensor MR imaging and fiber tractography: technical considerations. American Journal of Neuroradiology 29, 843852.Google Scholar
Najjar, S, Pearlman, D (2015). Neuroinflammation and white matter pathology in schizophrenia: systematic review. Schizophrenia Research 161, 102112.Google Scholar
Nir, T, Jahanshad, N, Villalon-Reina, J, Toga, A, Jack, C, Weiner, M, Thompson, P, Alzheimer's Disease Neuroimaging Initiative (ADNI) (2013). Effectiveness of regional DTI measures in distinguishing Alzheimer's disease, MCI, and normal aging. Neuroimage: Clinical 3, 180195.Google Scholar
Oestreich, L, McCarthy-Jones, S, Australian Schizophrenia Research Bank, Whitford, T (2015). Decreased integrity of the fronto-temporal fibers of the left inferior occipito-frontal fasciculus associated with auditory verbal hallucinations in schizophrenia. Brain Imaging & Behavior 10, 445454.CrossRefGoogle Scholar
Olabi, B, Ellison-Wright, I, McIntosh, A, Wood, S, Bullmore, E, Lawrie, S (2011). Are there progressive brain changes in schizophrenia? A meta-analysis of structural magnetic resonance imaging studies. Biological Psychiatry 70, 8896.Google Scholar
Oldfield, R (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9, 97113.Google Scholar
Ou, Y, Sotiras, A, Paragios, N, Davatzikos, C (2011). DRAMMS: deformable registration via attribute matching and mutual-saliency weighting. Medical Image Analysis 15, 622639.Google Scholar
Patel, S, Mahon, K, Wellington, R, Zhang, J, Chaplin, W, Szeszko, P (2011). A meta-analysis of diffusion tensor imaging studies of the corpus callosum in schizophrenia. Schizophrenia Research 129, 149155.Google Scholar
Pierpaoli, C, Basser, P (1996). Toward a quantitative assessment of diffusion anisotropy. Magnetic Resonance in Medicine 36, 893906.CrossRefGoogle Scholar
Qiu, C, Zhu, C, Zhang, J, Nie, X, Feng, Y, Meng, Y, Wu, R, Huang, X, Zhang, W, Gong, Q (2014). Diffusion tensor imaging studies on Chinese patients with social anxiety disorder. BioMed Research International 2014, 860658.Google Scholar
Reis Marques, T, Taylor, H, Chaddock, C, Dell'acqua, F, Handley, R, Reinders, A, Mondelli, V, Bonaccorso, S, Diforti, M, Simmons, A, David, A, Murray, R, Pariante, C, Kapur, S, Dazzan, P (2014). White matter integrity as a predictor of response to treatment in first episode psychosis. Brain 137, 172182.Google Scholar
Rosa, P, Zanetti, M, Duran, F, Santos, L, Menezes, P, Scazufca, M, Murray, R, Busatto, G, Schaufelberger, M (2015). What determines continuing grey matter changes in first-episode schizophrenia and affective psychosis? Psychological Medicine 45, 817828.Google Scholar
Ruef, A, Curtis, L, Moy, G, Bessero, S, Badan Bâ, M, Lazeyras, F, Lövblad, K, Haller, S, Malafosse, A, Giannakopoulos, P, Merlo, M (2012). Magnetic resonance imaging correlates of first-episode psychosis in young adult male patients: combined analysis of grey and white matter. Journal of Psychiatry Neuroscience 37, 305312.Google Scholar
Samartzis, L, Dima, D, Fusar-Poli, P, Kyriakopoulos, M (2014). White matter alterations in early stages of schizophrenia: a systematic review of diffusion tensor imaging studies. Journal of Neuroimaging 24, 101110.Google Scholar
Saunders, J, Aasland, O, Babor, T, de la Fuente, J, Grant, M (1993). Development of the alcohol use disorders identification test (AUDIT): WHO collaborative project on early detection of persons with harmful alcohol consumption – II. Addiction 88, 791804.Google Scholar
Sbardella, E, Tona, F, Petsas, N, Pantano, P (2013). DTI measurements in multiple sclerosis: evaluation of brain damage and clinical implications. Multiple Sclerosis International 2013, 671730.CrossRefGoogle ScholarPubMed
Schaufelberger, M, Lappin, J, Duran, F, Rosa, P, Uchida, R, Santos, L, Murray, R, McGuire, P, Scazufca, M, Menezes, P, Busatto, G (2011). Lack of progression of brain abnormalities in first-episode psychosis: a longitudinal magnetic resonance imaging study. Psychological Medicine 41, 16771689.Google Scholar
Schlösser, R, Nenadic, I, Wagner, G, Güllmar, D, von Consbruch, K, Köhler, S, Schultz, C, Koch, K, Fitzek, C, Matthews, P, Reichenbach, J, Sauer, H (2007). White matter abnormalities and brain activation in schizophrenia: a combined DTI and fMRI study. Schizophrenia Research 89, 111.Google Scholar
Skudlarski, P, Schretlen, D, Thaker, G, Stevens, M, Keshavan, M, Sweeney, J, Tamminga, C, Clementz, B, O'Neil, K, Pearlson, G (2013). Diffusion tensor imaging white matter endophenotypes in patients with schizophrenia or psychotic bipolar disorder and their relatives. American Journal of Psychiatry 170, 886898.Google Scholar
Smith, S, Jenkinson, M, Johansen-Berg, H, Rueckert, D, Nichols, T, Mackay, C, Watkins, K, Ciccarelli, O, Cader, M, Matthews, P, Behrens, T (2006). Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31, 14871505.Google Scholar
Snook, L, Plewes, C, Beaulieu, C (2007). Voxel based versus region of interest analysis in diffusion tensor imaging of neurodevelopment. Neuroimage 34, 243252.Google Scholar
Spalletta, G, Piras, F, Fagioli, S, Caltagirone, C, Piras, F (2014). Brain microstructural changes and cognitive correlates in patients with pure obsessive compulsive disorder. Brain and Behavior 4, 261277.CrossRefGoogle ScholarPubMed
Sun, Y, Chen, Y, Lee, R, Bezerianos, A, Collinson, SL, Sim, K (2016). Disruption of brain anatomical networks in schizophrenia: a longitudinal, diffusion tensor imaging based study. Schizophrenia Research 171, 149157.Google Scholar
Szeszko, P, Robinson, D, Ashtari, M, Vogel, J, Betensky, J, Sevy, S, Ardekani, B, Lencz, T, Malhotra, A, McCormack, J, Miller, R, Lim, K, Gunduz-Bruce, H, Kane, J, Bilder, R (2008). Clinical and neuropsychological correlates of white matter abnormalities in recent onset schizophrenia. Neuropsychopharmacology 33, 976984.Google Scholar
Szeszko, P, Robinson, D, Ikuta, T, Peters, B, Gallego, J, Kane, J, Malhotra, A (2014). White matter changes associated with antipsychotic treatment in first-episode psychosis. Neuropsychopharmacology 39, 13241331.Google Scholar
Takahashi, N, Sakurai, T, Davis, K, Buxbaum, J (2011). Linking oligodendrocyte and myelin dysfunction to neurocircuitry abnormalities in schizophrenia. Progress in Neurobiology 93, 1324.Google Scholar
Tha, K, Terae, S, Nakagawa, S, Inoue, T, Kitagawa, N, Kako, Y, Nakato, Y, Akter Popy, K, Fujima, N, Zaitsu, Y, Yoshida, D, Ito, YM, Miyamoto, T, Koyama, T, Shirato, H (2013). Impaired integrity of the brain parenchyma in non-geriatric patients with major depressive disorder revealed by diffusion tensor imaging. Psychiatry Research 212, 208215.Google Scholar
Van Hecke, W, Leemans, A, De Backer, S, Jeurissen, B, Parizel, P, Sijbers, J (2010). Comparing isotropic and anisotropic smoothing for voxel-based DTI analyses: a simulation study. Human Brain Mapping 31, 98114.CrossRefGoogle ScholarPubMed
Wagner, G, De la Cruz, F, Schachtzabel, C, Güllmar, D, Schultz, C, Schlösser, R, Bär, K, Koch, K (2015). Structural and functional dysconnectivity of the fronto-thalamic system in schizophrenia: a DCM-DTI study. Cortex 66, 3545.CrossRefGoogle ScholarPubMed
Wakana, S, Jiang, H, Nagae-Poetcher, L, van Zijl, P, Mori, S (2004). Fiber tract-based atlas of human white matter anatomy. Radiology 230, 7787.CrossRefGoogle ScholarPubMed
Wang, Q, Cheung, C, Deng, W, Li, M, Huang, C, Ma, X, Wang, Y, Jiang, L, Sham, P, Collier, D, Gong, Q, Chua, S, McAlonan, G, Li, T (2013). White-matter microstructure in previously drug-naive patients with schizophrenia after 6 weeks of treatment. Psychological Medicine 43, 23012309.Google Scholar
Wheeler-Kingshott, C, Cercignani, M (2009). About ‘axial’ and ‘radial’ diffusivities. Magnetic Resonance in Medicine 61, 12551260.Google Scholar
Worsley, KJ, Evans, AC, Marrett, S, Neelin, P (1992). A three-dimensional statistical analysis for CBF activation studies in human brain. Journal of Cerebral Blood Flow & Metabolism 12, 900918.Google Scholar
Xiao, L, Xu, H, Zhang, Y, Wei, Z, He, J, Jiang, W, Li, X, Dyck, L, Devon, R, Deng, Y, Li, X (2008). Quetiapine facilitates oligodendrocyte development and prevents mice from myelin breakdown and behavioral changes. Molecular Psychiatry 13, 697708.CrossRefGoogle ScholarPubMed
Yao, L, Lui, S, Liao, Y, Du, M, Hu, N, Thomas, J, Gong, Q (2013). White matter deficits in first episode schizophrenia: an activation likelihood estimation meta-analysis. Progress in Neuro-psychopharmacology & Biological Psychiatry 45, 100106.Google Scholar
Zeng, B, Ardekani, B, Tang, Y, Zhang, T, Zhao, S, Cui, H, Fan, X, Zhuo, K, Li, C, Xu, Y, Goff, D, Wang, J (2016). Abnormal white matter microstructure in drug-naive first episode schizophrenia patients before and after eight weeks of antipsychotic treatment. Schizophrenia Research 172, 18.Google Scholar
Zhang, Y, Zhang, H, Wang, L, Jiang, W, Xu, H, Xiao, L, Bi, X, Wang, J, Zhu, S, Zhang, R, He, J, Tan, Q, Zhang, D, Kong, J, Li, X (2012). Quetiapine enhances oligodendrocyte regeneration and myelin repair after cuprizone-induced demyelination. Schizophrenia Research 138, 817.Google Scholar
Supplementary material: File

Serpa et al supplementary material

Table S1

Download Serpa et al supplementary material(File)
File 21.4 KB