Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T10:58:45.488Z Has data issue: false hasContentIssue false

Structure and Magnetic Property Correlation in Nanocrystalline SmFe9

Published online by Cambridge University Press:  21 February 2011

C. Djega-Mariadassou
Affiliation:
CNRS, LCMTR UPR 209, 94320 Thiais, France. bessais@glvt-cnrs.fr
L. Bessais
Affiliation:
CNRS, LCMTR UPR 209, 94320 Thiais, France. bessais@glvt-cnrs.fr
Get access

Abstract

SmxFe100−x samples with x = 7.6, 10.5 and 12.5 were prepared by high energy ball-milling and subsequent annealing at various temperature Ta, 600 < Ta < 1200 °C. Rietveld analysis coupled to Curie temperature measurements and M6ssbauer spectroscopy revealed for 600 < Ta < 900 °C an hexagonal phase P6/mmm derived from TbCu7 with stoichiometry SmFe9. At Ta > 900 °C, the ordered R3m Sm2Fe17 structure is obtained so that SmFe9 appears as the out-of-equilibrium precursor of Sm2Fe17. The Curie temperature and hyperfine field augmentation found for SmFe9 results from an increase of the interatomic distance in the Fe-Fe dumbbell, responsible for a reduction of the negative exchange interaction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Coey, J.M.D., Sun, H., Otani, Y. and Hurley, D.P.F., J. Magn. Magn. Mater. 98, 76 (1991).Google Scholar
2. Wei, L., Qun, W., Sun, X.K., Xing-guo, Z., Tong, Z., Zhi-dong, Z. and Chuang, Y.C. J. Magn. Magn. Mater. 131, 413 (1994).Google Scholar
3. Sinan, S.A., Edgley, D.S. and Harris, I.R., J. Alloy Compounds 226, 170 (1995).Google Scholar
4. Hu, J., Hofmann, B., Dragon, T., Reisser, R., Sun, L., Hu, B., Cao, L., Shen, B. and Kronmmüller, H., Phys. Stat. Sol. (a) 148, 275 (1995).Google Scholar
5. Kou, X.C., Grossinger, R., Jacobs, T.H. and Buschow, K.H.J., J. Magn. Magn. Mater 88, 1 (1990).Google Scholar
6. Machida, K., Yamamoto, E.Y. and Adachi, G.Y., J. Alloy Compounds 193, 271 (1993).Google Scholar
7. Schnitzke, K., Schultz, L., Wecker, J. and Katter, M., App. Phys. lett. 57, 2853 (1990).Google Scholar
8. Rodriguez-Carvajal, J., Physica B 192, 55 (1993).Google Scholar
9. Givord, D., Laforest, J., Schweizer, J. and Tasset, F., J. Appl. Phys. 50, 2008 (1979).Google Scholar
10. Villars, P. and Calvert, L.D., Pearson's Handbook of Crystallographic data for Intermetallic Phases 2nd ed. (ASM international, 1991) p. 3012.Google Scholar
11. Hu, B.P., Li, H. S., Sun, H. and Coey, J.M.D., J. Phys.: Condens. Matt. 3, 3983 (1991).Google Scholar
12. Zhou, R.J., Rosenberg, M., Katter, M. and Schultz, L., J. Magn. Magn. Mater. 118, 110 (1993).Google Scholar
13. Long, G.J., Mishra, S., Pringle, O.A., Grandjean, F. and Buschow, K. H. J., J. Appl. Phys. 75, 5994 (1994).Google Scholar
14. Li, Z.W. and Morrish, A.H., Phys. Rev. B 55, 3670 (1997).Google Scholar