Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T22:25:11.673Z Has data issue: false hasContentIssue false

Recrystallization and cube texture formation in heavily cold-rolled Ni7W alloy substrates for coated conductors

Published online by Cambridge University Press:  21 May 2015

Yaru Liang
Affiliation:
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
Hui Tian
Affiliation:
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
Hongli Suo*
Affiliation:
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
Pan Wang
Affiliation:
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
Yichen Meng
Affiliation:
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
Lin Ma
Affiliation:
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
Min Liu
Affiliation:
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
*
a)Address all correspondence to this author. e-mail: honglisuo@bjut.edu.com
Get access

Abstract

The formation of deformation and recrystallization textures has been investigated in a Ni7W alloy after heavy cold rolling and subsequent annealing at different temperatures. Cold rolling to a von Mises strain of 4.17 produced a mix of rolling texture that lies between classical brass- and copper-type rolling textures, with the fraction of S({123}<634>), brass({110}<112>), and copper({112}<111>) orientations being 33, 28, and 13%, respectively. The fraction of rolling texture for the deformed Ni7W alloy samples increased slightly during recovery, was then consumed significantly during recrystallization, and dropped to 22% after being annealed at 800 °C for 1 h. The fraction of cube({001}<100>) orientation increased to 26% after primary recrystallization, whereas other random orientations of 43% formed in the Ni7W alloy samples. Further annealing promoted cube grain growth, which lead to a significant strengthening of the cube texture and to a significant loss in high angle boundary (HAB). The fractions of cube texture and HAB of the Ni7W alloy substrate were 92.1 and 27.8%, respectively, after annealing at 1200 °C for 1 h.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Goyal, A., Lee, D.F., List, F.A., Specht, E.D., Feenstra, R., Paranthaman, M., Cui, X., Lu, S.W., Martin, P.M., Kroeger, D.M., Christen, D.K., Kang, B.W., Norton, D.P., Park, C., Verebelyi, D.T., Thompson, J.R., Williams, R.K., Aytug, T., and Cantoni, C.: Recent progress in the fabrication of high-Jc tapes by epitaxial deposition of YBCO on RABiTS. Phys. C 357, 903 (2001).CrossRefGoogle Scholar
Goyal, A., Nortoa, D.P., Kroeger, D.M., Christen, D.K., Paranthaman, M., Specht, E.D., Budai, J.D., He, Q., Saffian, B., List, F.A., Lee, D.F., Hatfield, E., Martin, P.M., Klabunde, C.E., Mathis, J., and Parka, C.: Conductors with controlled grain boundaries: An approach to the next generation, high temperature superconducting wire. J. Mater. Res. 12, 2924 (1997).CrossRefGoogle Scholar
Ijaduola, A.O., Thompson, J.R., Goyal, A., Thieme, C.L.H., and Markend, K.: Magnetism and ferromagnetic loss in Ni–W textured substrates for coated conductors. Phys. C 403, 163 (2004).CrossRefGoogle Scholar
Goyal, A., Feenstra, R., List, F.A., Paranthaman, M., Lee, D.F., Kroeger, D.M., Beach, D.B., Morrell, J.S., Chirayil, T.G., Verebelyi, D.T., Cui, X., Specht, E.D., Christen, D.K., and Martin, P.M.: Using RABiTS to fabricate high-temperature superconducting wire. JOM 51, 19 (1999).CrossRefGoogle Scholar
Rupich, M.W., Schoop, U., Verebelyi, D.T., Thieme, C., Zhang, W., Li, X., Kodenkandath, T., Nguyen, N., Siegal, E., Buczek, D., Lynch, J., Jowett, M., Thompson, E., Wang, J. S., Scudiere, J., Malozemoff, A.P., Li, Q., Annavarapu, S., Cui, S., Fritzemeier, L., Aldrich, B., Craven, C., Niu, F., Schwall, R., Goyal, A., and Paranthaman, M.: YBCO coated conductors by an MOD/RABiTS™ process. IEEE Trans. Appl. Supercond. 13, 2458 (2003).CrossRefGoogle Scholar
Sathyamurthy, S., Paranthaman, M., Zhai, H.Y., Kang, S., Aytug, T., Cantoni, C., Leonard, K.J., Payzant, E.A., Christen, H.M., Goyal, A., Li, X., Schoop, U., Kodenkandath, T., and Rupich, M.W.: Chemical solution deposition of lanthanum zirconate barrier layers applied to low-cost coated-conductor fabrication. J. Mater. Res. 19, 2117 (2004).Google Scholar
Zhang, W., Rupich, M.W., Schoop, U., Verebelyi, D.T., Thieme, C.L.H., Li, X., Kodenkandath, T., Huang, Y., Siegal, E., Buczek, D., Carter, W., Nguyen, N., Schreiber, J., Prasova, M., Lynch, J., Tucker, D., and Fleshler, S.: Progress in AMSC scale-up of second generation HTS wire. Phys. C 463465, 505 (2007).CrossRefGoogle Scholar
Eickemeyer, J., Selbmann, D., Optiz, R., Maher, E., and Prusseit, W.: Effect of nickel purity on cube texture formation in RABiT-tapes. Phys. C 24252426, 341 (2000).Google Scholar
Zhou, Y.X., Ghalsasi, S.V., Hanna, M., Tang, Z.J., Meng, R.L., and Salama, K.: Fabrication of cube-textured Ni-9% at W substrate for YBCO superconducting wires using powder metallurgy. IEEE Trans. Appl. Supercond. 17, 3428 (2007).Google Scholar
Suo, H.L., Gao, M.M., Zhao, Y., Zhu, Y.H., Gao, P.K., Wang, J.H., Liu, M., Ma, L., and Ji, Y.: Development of advanced substrates for HTS coated conductors. IEEE Trans. Appl. Supercond. 20, 1569 (2010).Google Scholar
Goyal, A., Feenstra, R., Paranthaman, M., Thompson, J.R., Kang, B.Y., Cantoni, C., Lee, D.F., List, F.A., Martin, P.M., Lara-Curzio, E., Stevens, C., Kroeger, D.M., Kowalewski, M., Specht, E.D., Aytug, T., Sathyamurthy, S., Williams, R.K., and Ericson, R.E.: Strengthened, biaxially textured Ni substrate with small alloying additions for coated conductor applications. Phys. C 382, 251 (2002).Google Scholar
Gao, M.M., Suo, H.L., Grivel, J., Zhao, Y., Gao, P.K., Liu, M., and Ma, L.: Fabrication of the textured Ni-9.3 at.% W alloy substrate for coated conductors. IEEE Trans. Appl. Supercond. 21, 2969 (2011).Google Scholar
Eickemeyer, J., Hühne, R., Güth, A., Rodig, C., Klauß, H., and Holzapfel, B.: Textured Ni–7.5 at.% W substrate tapes for YBCO-coated conductors. Supercond. Sci. Technol. 21, 105012 (2008).Google Scholar
Eickemeyer, J., Hühne, R., Güth, A., Rodig, C., Gaitzsch, U., Freudenberger, J., Schultz, L., and Holzapfel, B.: Textured Ni–9.0 at.% W substrate tapes for YBCO-coated conductors. Supercond. Sci. Technol. 23, 085012 (2010).Google Scholar
Kalidindi, S.R.: Modeling anisotropic strain hardening and deformation textures in low stacking fault energy fcc metals. Int. J. Plast. 17, 837 (2001).CrossRefGoogle Scholar
Subramanya Sarma, V., Eickemeyer, J., Schultz, L., and Holzapfel, B.: Recrystallisation texture and magnetisation behaviour of some FCC Ni–W alloys. Scr. Mater. 50, 953 (2004).Google Scholar
Leffers, T. and Ray, R.K.: The brass-type texture and its deviation from the copper-type texture. Prog. Mater. Sci. 54(3), 351 (2009).Google Scholar
Gervasyeva, I.V., Rodionov, D.P., Sokolov, B.K., and Khlebnikova, Yu.V.: Effect of deformation texture component composition on cube texture formation during primary recrystallization in Ni-based alloys. Mater. Sci. Forum 495497, 1213 (2005).Google Scholar
Subramanya Sarma, V., Eickemeyer, J., Mickel, C., Schultz, L., and Holzapfel, B.: On the cold rolling textures in some fcc Ni–W alloys. Mater. Sci. Eng., A 380, 30 (2004).Google Scholar
Tian, H., Suo, H.L., Qiu, H.Q., Ma, L., Liu, M., Wang, L.M., Wang, D.M., and Wang, Y.X.: Investigation of cold rolling texture and recrystallization texture in NiW substrates. Rare Met. Mater. Eng. 40, 329 (2001).Google Scholar
Tian, H., Suo, H.L., Mishin, O.V., Zhang, Y.B., Juul Jensen, D., and Grivel, J-C.: Annealing behaviour of a nanostructured Cu–45 at.% Ni alloy. J. Mater. Sci. 48, 4183 (2013).Google Scholar
Zahid, G.H., Huang, Y., and Prangnell, P.B.: Microstructure and texture evolution during annealing a cryogenic-SPD processed Al-alloy with a nanoscale lamellar HAGB grain structure. Acta Mater. 57, 3509 (2009).Google Scholar
Bhattacharjee, P.P., Ray, R.K., and Tsuji, N.: Evolution of deformation and recrystallization textures in high-purity Ni and the Ni-5at.% W alloy. Metall. Mater. Trans. A 41, 2856 (2010).CrossRefGoogle Scholar
Zhang, Y.B., Godfrey, A., Liu, Q., Liu, W., and Juul Jensen, D.: Analysis of the growth of individual grains during recrystallization in pure nickel. Acta Mater. 57, 2631 (2009).Google Scholar
Wang, Y.X., Suo, H.L., Ma, L., Wang, D.M., and Wang, J.H.: Formation of cube texture in Ni5W alloy substrates by melting route. Rare Met. Mater. Eng. 42, 1611 (2013).Google Scholar
Mishi, O.V. and Gottstein, G.: Grain boundary ensembles due to grain growth in copper with strong recrystallization texture. Mater. Sci. Eng., A 249, 71 (1998).Google Scholar
Wulff, A.C., Mishin, O.V., and Grivel, J-C.: Evolution of microstructure, texture and topography during additional annealing of cube-textured Ni–5at.%W substrate for coated conductors. J. Alloys Compd. 539, 161 (2012).Google Scholar