Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-29T02:27:43.718Z Has data issue: false hasContentIssue false

Mechanical and thermal properties of single crystals of ZrB2

Published online by Cambridge University Press:  11 February 2011

N. L. Oka moto
Affiliation:
Department of Materials Science and Engineering, Kyoto University Sakyo-ku, Kyoto 606–8501, Japan
M. Kusakari
Affiliation:
Department of Materials Science and Engineering, Kyoto University Sakyo-ku, Kyoto 606–8501, Japan
K. Tanaka
Affiliation:
Department of Materials Science and Engineering, Kyoto University Sakyo-ku, Kyoto 606–8501, Japan
H. Inui
Affiliation:
Department of Materials Science and Engineering, Kyoto University Sakyo-ku, Kyoto 606–8501, Japan
M. Yamaguchi
Affiliation:
Department of Materials Science and Engineering, Kyoto University Sakyo-ku, Kyoto 606–8501, Japan
S. Otani
Affiliation:
Advanced Materials Laboratory, National Institute for Materials Science, 1–1, Namiki, Tsukuba, Ibaraki 305–0044, Japan
Get access

Abstract

Coefficients of thermal expansion (CTE), elastic constants and plastic deformation behaviors of single crystals of ZrB2, which possesses a hexagonal layered structure where pure Zr and pure B atomic planes stack alternatively along the c-axis, have been investigated in wide temperature ranges. While the observed elastic constants indicate highly anisotropic nature of atomic bonding being consistent with the layered structure, the observed CTE values are rather isotropic. Two operative slip systems, (0001)<1120> and on {1100}<1123>, are identified in compression tests. The observed plastic behaviors are discussed in the light of the deduced anisotropy in atomic bonding.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Goldschmidt, H.J. (ed), in Interstitial Alloys (Buttrworths, London, 1967).Google Scholar
[2] Matkovich, V.I. (ed), in Boron and Refractory Boride s (Springer-Verlag, Berlin, 1977).Google Scholar
[3] Brotherton, R.J. and Steinberg, H. (eds), Progress in Boron Chemistry, Vol. 2 (Pergamon, New York, 1970).Google Scholar
[4] Brown, A.S., Aerospace America, 35, 20 (1997).Google Scholar
[5] Kinoshita, H., Otani, S., Kamiyama, S., Amano, H., Akasaki, I., Suda, J. and Matsunami, H., Japanese J. Appl. Phys., 40, L1280 (2001).Google Scholar
[6] Suda, J. and Matsunami, H., J. Cryst. Growth, 237–239, 1114 (2002).Google Scholar
[7] Hughes, W.C., Rowland, W.H., Johnson, M.A.L., Fujita, S., Cook, J.W., Schetzina, J.F., Ren, J. and Edmond, J.A., J. Vac. Sci. Tech., B13, 1571 (1995).Google Scholar
[8] Melnik, Y.U., Nikitana, I.P., Zubrilov, A.S., Sitnikova, A.A., Musikhin, Y.G., Dimitriev, V.A., Inst. Phys. Conf., 142, 863 (1996).Google Scholar
[9] Detchprohm, T., Hiramatsu, K., Itoh, K. and Akasaki, I., Japanese J. Appl. Phys., 31, L1454 (1992).Google Scholar
[10] Kato, Y., Kitamura, S., Hiramatsu, K. and Sawaki, N., J. Cryst. Growth, 144, 133 (1994)Google Scholar
[11] Wu, X.H., Fini, P., Keller, S., Tarsa, E.J., Heying, B., Mishra, U.K., Den Baars, S.P. and Speck, J.S., Japanese J. Appl. Phys., 35, L1648 (1996).Google Scholar
[12] Cutler, R.A., Engineered Materials Handbook, Vol. 4 (The Materials Information Society, Warrendale, PA, U.S.A., 1990), p. 787.Google Scholar
[13] Otani, S. and Ishizawa, Y., J. Cryst. Growth, 165, 319 (1996).Google Scholar
[14] Otani, S., Korsukova, M.M. and Mitsuhashi, T., J. Cryst. Growth, 186, 582 (1998).Google Scholar
[15] Tanaka, K. and Koiwa, M., High Temp. Mater. Process., 18, 323 (1999).Google Scholar
[16] Okamoto, N.L., Kusakari, M., Tanaka, K., Inui, H., Yamaguchi, M. and Otani, S., J. Appl. Phys., in press.Google Scholar
[17] Maruska, H.P. and Tietjen, J.J., Appl. Phys. Lett, 15, 327 (1969).Google Scholar
[18] Ponce, F.A., Krusor, B.S., Major, J.S., Plano, W.E. and Welch, E.F., Appl. Phy Lett, 67, 410 (1995).Google Scholar