Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T19:41:41.326Z Has data issue: false hasContentIssue false

C60 and U ion irradiation of Gd2TixZr2−xO7 pyrochlore

Published online by Cambridge University Press:  28 August 2015

Jiaming Zhang
Affiliation:
Department of Geological Sciences, School of Earth Science, Stanford University, Stanford, California 94305, USA
Marcel Toulemonde
Affiliation:
Centre interdisciplinaire de recherche sur les Ions, les Matériaux et la Photonique (CIMAP), CEA-CNRS-ENSICAEN-University of Caen, 14070 Caen, France
Maik Lang
Affiliation:
Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
Jean Marc Costantini
Affiliation:
CEA, DEN, SRMA, F-11191 Gif-sur-Yvette Cedex, France
Serge Della-Negra
Affiliation:
Institut de Physique Nucléaire, CNRS-IN2P3, 91406 Orsay, France
Rodney C. Ewing*
Affiliation:
Department of Geological Sciences, School of Earth Science, Stanford University, Stanford, California 94305, USA
*
a)Address all correspondence to this author. e-mail: rewing1@stanford.edu
Get access

Abstract

Gd2TixZr2−xO7 (x = 0 to 2) pyrochlore was irradiated by 30 MeV C60 clusters, which provide an extremely high ionizing energy density. High-resolution transmission electron microscopy revealed a complex ion-track structure in Gd2Ti2O7 and Gd2TiZrO7, consisting of an amorphous core and a shell of a disordered, defect-fluorite structure. As compared with the irradiation by 1.5 GeV U ions with the highest energy loss, the track structure is consistent with tracks created by monoatomic swift heavy ions, but the diameters (with the entire diameter of 17 nm for Gd2Ti2O7 and 15 nm for Gd2TiZrO7) are significantly larger due to the much smaller velocity and higher energy density of the C60 ions. Ion tracks created by monoatomic ions are challenging to describe by HRTEM, as the boundary between disordered fluorite and pyrochlore matrix is less distinct. However, the C60 irradiation shows a clearly resolved ion track with completely crystalline, disordered, defect-fluorite structure around an amorphous core. Based on the distinct boundaries of the track morphology, inelastic thermal-spike calculations were used to describe the track size and extract critical energy densities for the interpretation of the complex core–shell morphologies for the different pyrochlore compositions.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Jozwik-Biala, I., Jagielski, J., Arey, B., Kovarik, L., Sattonnay, G., Debelle, A., Mylonas, S., Monnet, I., and Thomé, L.: Acta Mater. 61(12), 46694675 (2013).CrossRefGoogle Scholar
Zhang, J.M., Lang, M., Ewing, R.C., Devanathan, R., Weber, W.J., and Toulemonde, M.: J. Mater. Res. 25(7), 1344 (2010).Google Scholar
Lang, M., Lian, J., Zhang, J.M., Zhang, F., Weber, W.J., Trautmann, C., and Ewing, R.C.: Phys. Rev. B 79, 224105 (2009).Google Scholar
Subramanian, M.A., Aravamudan, G., and Subba Rao, G.V.: Prog. Solid State Chem. 15(2), 55143 (1983).Google Scholar
Sickafus, K.E., Minervini, L., Grimes, R.W., Valdez, J.A., Ishimaru, M., Li, F., McClellan, K.J., and Hartmann, T.: Science 289(5480), 748751 (2000).Google Scholar
Ewing, R.C., Weber, W.J., and Lian, J.: J. Appl. Phys. 95, 59495971 (2004).Google Scholar
Ewing, R.C.: Prog. Nucl. Energy 49(8), 635643 (2007).Google Scholar
Lang, M., Zhang, F., Zhang, J., Wang, J., Schuster, B., Trautmann, C., Neumann, R., Becker, U., and Ewing, R.C.: Nat. Mater. 8(10), 793797 (2009).Google Scholar
Dammak, H., Dunlop, A., Lesueur, D., Brunelle, A., Della-Negra, S., and Beyec, Y.L.: Phys. Rev. Lett. 74(7), 11351138 (1995).Google Scholar
Sickafus, K., Grimes, R.W., Valdez, J.A., Cleave, A., Tang, M., Ishimaru, M., Corish, S.M., Stanek, C.R., and Uberuaga, B.P.: Nat. Mater. 6, 217 (2007).CrossRefGoogle Scholar
Zhang, J.M., Lang, M., Lian, J., Liu, J., Trautmann, C., Della-Negra, S., Toulemonde, M., and Ewing, R.C.: J. Appl. Phys. 105, (2009).Google Scholar
Sattonnay, G., Grygiel, C., Monnet, I., Legros, C., Herbst-Ghysel, M., and Thomé, L.: Acta Mater. 60(1), 2234 (2012).Google Scholar
Tracy, C.L., Lang, M., Zhang, J., Zhang, F., Wang, Z., and Ewing, R.C.: Acta Mater. 60(11), 44774486 (2012).Google Scholar
Dunlop, A., Jaskierowicz, G., and Della-Negra, S.: Nucl. Instrum. Methods Phys. Res., Sect. B 146(1–4), 302308 (1998).Google Scholar
Dunlop, A., Jaskierowicz, G., Ossi, P.M., and Della-Negra, S.: Phys. Rev. B 76(15), 155403 (2007).Google Scholar
Bringa, E.M. and Johnson, R.E.: Phys. Rev. Lett. 88(16), 165501 (2002).Google Scholar
Toulemonde, M., Dufour, C., Meftah, A., and Paumier, E.: Nucl. Instrum. Methods Phys. Res., Sect. B 166167, 903912 (2000).Google Scholar
Trautmann, C., Klaumünzer, S., and Trinkaus, H.: Phys. Rev. Lett. 85(17), 36483651 (2000).Google Scholar
Wang, J.W., Lang, M., Ewing, R.C., and Becker, U.: J. Phys.: Condens. Matter 25, 135001 (2013).Google Scholar
Zhang, F.X., Wang, J.W., Lian, J., Lang, M.K., Becker, U., and Ewing, R.C.: Phys. Rev. Lett. 100, 045503 (2008).Google Scholar
Lian, J., Wang, L.M., Wang, S.X., Chen, J., Boatner, L.A., and Ewing, R.C.: Phys. Rev. Lett. 87(14), 145901 (2001).CrossRefGoogle Scholar
Lian, J., Chen, J., Wang, L.M., Ewing, R.C., Farmer, J.M., Boatner, L.A., and Helean, K.B.: Phys. Rev. B 68(13), 134107 (2003).Google Scholar
Lian, J., Wang, L., Chen, J., Sun, K., Ewing, R.C., Matt Farmer, J., and Boatner, L.A.: Acta Mater. 51(5), 14931502 (2003).Google Scholar
Lang, M., Toulemonde, M., Zhang, J.M., Zhang, F.X., Tracy, C.L., Lian, J., Wang, Z.W., Weber, W.J., Severin, D., Bender, M., Trautmann, C., and Ewing, R.C.: Nucl. Instrum. Methods Phys. Res., Sect. B 336, 102 (2014).Google Scholar
Wang, S.X., Wang, L.M., Ewing, R.C., Was, G.S., and Lumpkin, G.R.: Nucl. Instrum. Methods Phys. Res., Sect. B 148(1–4), 704709 (1999).CrossRefGoogle Scholar
Wang, S.X., Wang, L.M., and Ewing, R.C.: Phys. Rev. B 63(2), 024105 (2000).Google Scholar
Lian, J., Zu, X.T., Kutty, K.V.G., Chen, J., Wang, L.M., and Ewing, R.C.: Phys. Rev. B 66(5), 054108 (2002).Google Scholar
Lang, M., Zhang, F.X., Ewing, R.C., Lian, J., Trautmann, C., and Wang, Z.W.: J. Mater. Res. 24, 13221334 (2009).Google Scholar
Waligórski, M.P.R., Hamm, R.N., and Katz, R.: Int. J. Radiat. Appl. Instrum., Part D. Nucl. Tracks Radiat. Meas. 11(6), 309319 (1986).Google Scholar
Gervais, B. and Bouffard, S.: Nucl. Instrum. Methods Phys. Res., Sect. B 88(4), 355364 (1994).Google Scholar
Dufour, C., Audouard, A., Beuneu, F., Dural, J., Girard, J.P., Hairie, A., Levalois, M., Paumier, E., and Toulemonde, M.: J. Phys.: Condens. Matter 5(26), 4573 (1993).Google Scholar
Baranov, I.A., Martynenko, Y.V., Tsepelevich, S.O., and Yavlinskiĭ, Y.N.: Sov. Phys.-Usp. 31(11), 1015 (1988).Google Scholar
Meftah, A., Brisard, F., Costantini, J.M., Hage-Ali, M., Stoquert, J.P., Studer, F., and Toulemonde, M.: Phys. Rev. B 48(2), 920 (1993).Google Scholar
Dunlop, A., Lesueur, D., Legrand, P., Dammak, H., and Dural, J.: Nucl. Instrum. Methods Phys. Res., Sect. B 90, 330 (1994).CrossRefGoogle Scholar
Dufour, C., Wang, Z.G.P., Paumier, E., and Toulemonde, M.: Bull. Mater. Sci. 22, 671 (1999).Google Scholar
Toulemonde, M., Assmann, W., Dufour, C., Meftah, A., and Trautmann, C.: Nucl. Instrum. Methods Phys. Res., Sect. B 277, 28 (2012).Google Scholar
Toulemonde, M., Costantini, J.M., Dufour, C., Meftah, A., Paumier, E., and Studer, F.: Nucl. Instrum. Methods Phys. Res., Sect. B 116(1–4), 3742 (1996).Google Scholar
Toulemonde, M., Assmann, W., Dufour, C., Meftah, A., Studer, F., and Trautmann, C.: Mat.-Fys. Medd. 52, (2006).Google Scholar
Wilde, P.J. and Catlow, C.R.A.: Solid State Ionics 112(3–4), 173183 (1998).Google Scholar
Liu, Z-G., Ouyang, J-H., Zhou, Y., and Xia, X-L.: Mater. Lett. 62(29), 44554457 (2008).CrossRefGoogle Scholar
Toulemonde, M., Assmann, W., Trautmann, C., and Gruner, F.: Phys. Rev. Lett. 88, 057602 (2002).Google Scholar
Sattonnay, G., Moll, S., Thomé, L., Decorse, C., Legros, C., Simon, P., Jagielski, J., Jozwik, I., and Monnet, I.: J. Appl. Phys. 108(10), 103512 (2010).Google Scholar
Jozwik-Biala, I., Jagielski, J., Thomé, L., Arey, B., Kovarik, L., Sattonnay, G., Debelle, A., and Monnet, I.: Nucl. Instrum. Methods Phys. Res., Sect. B 286, 258261 (2012).Google Scholar
Moll, S., Sattonnay, G., Thomé, L., Jagielski, J., Legros, C., and Monnet, I.: Nucl. Instrum. Methods Phys. Res., Sect. B 268(19), 29332936 (2010).Google Scholar
Radha, A.V., Ushakov, S.V., and Navrotsky, A.: J. Mater. Res. 24(11), 33503357 (2009).CrossRefGoogle Scholar