Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T15:47:48.564Z Has data issue: false hasContentIssue false

Sharks and rays (Chondrichthyes, Elasmobranchii) from the late Miocene Gatun Formation of Panama

Published online by Cambridge University Press:  20 May 2016

Catalina Pimiento
Affiliation:
Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA, ; ; Smithsonian Tropical Research Institute, Center for Tropical Paleoecology and Archaeology, Box 2072, Panama, Republic of Panama, Department of Biology, University of Florida, Gainesville, FL 32611, USA
Gerardo González-Barba
Affiliation:
Museo de Historia Natural, Area de Ciencias del Mar, La Paz, Universidad Autonoma de Baja California Sur, AP 23080, Mexico,
Dana J. Ehret
Affiliation:
Alabama Museum of Natural History, University of Alabama, Tuscaloosa, Alabama, 35487, USA,
Austin J. W. Hendy
Affiliation:
Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA, ; ; Smithsonian Tropical Research Institute, Center for Tropical Paleoecology and Archaeology, Box 2072, Panama, Republic of Panama,
Bruce J. MacFadden
Affiliation:
Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA, ; ;
Carlos Jaramillo
Affiliation:
Smithsonian Tropical Research Institute, Center for Tropical Paleoecology and Archaeology, Box 2072, Panama, Republic of Panama,

Abstract

The late Miocene Gatun Formation of northern Panama contains a highly diverse and well sampled fossil marine assemblage that occupied a shallow-water embayment close to a purported connection between the Pacific and Atlantic (Caribbean) oceans. However, the diverse chondrichthyan fauna has been poorly documented. Based on recent field discoveries and further analysis of existing collections, the chondrichthyan fauna from this unit comprises at least 26 taxa, of which four species are extinct today. The remaining portion of the total chondrichthyan biodiversity has affinities with modern taxa and is therefore comprised of long-lived species. Based on known records of the modern geographic distribution range of the Gatun chondrichthyans, the fauna has mixed biogeographic affinities suggesting that around 10 million yr ago, a connection likely occurred between the Pacific Ocean and the Caribbean Sea. Given the known habitat preferences for modern chondrichthyans, the Gatun fauna was primarily adapted to shallow waters within the neritic zone. Finally, comparisons of Gatun dental measurements with other faunas suggest that many of the taxa have an abundance of small individuals, in agreement with previous studies that proposed this area as a paleonursery habitat for the species Carcharocles megalodon.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agassiz, L. 1833–1843. Recherches sur les poisons fossils. Neuchatel, Vol. 3, 390p.Google Scholar
Aguilera, O. 2010. Peces fósiles del Caribe de Venezuela. Gorham Printing, Centralia, 258p.Google Scholar
Aguilera, O. and Rodrigues de Aguilera, D. 1999. Bathymetric distribution of Miocene and Pliocene Caribbean Teleostean fishes from the coast of Panama and Costa Rica, p. 251270. InCollins, L. S. and Coates, A. G.(eds.), A Paleobiotic Survey of Caribbean Faunas from the Neogene of the Isthmus of Panama. Vol. 357, Bulletins of American Paleontology, Ithaca, New York.Google Scholar
Aguilera, O. and Rodrigues de Aguilera, D. 2001. An exceptional coastal upwelling fish assemblage in the Caribbean Neogene. Journal of Paleontology, 75:732742.Google Scholar
Aguilera, O. and Rodrigues de Aguilera, D. 2004. Giant-toothed white sharks and wide-toothed mako (Lamnidae) from the Venezuela Neogene: their role in the Caribbean, shallow-water fish assemblage. Caribbean Journal of Science, 40:368382.Google Scholar
Aguilera, O., Ramos, M. I., Paes, E., Costa, S., and Sánchez-Villagra, M. 2011. The Neogene Tropical America fish assemblage and the palaeobiogeography of the Caribbean region. Swiss Journal of Paleontology, 130:217240.Google Scholar
Allen, G. R. and Robertson, D. R. 1994. Fishes of the tropical eastern Pacific. University of Hawaii Press, Honolulu, 332p.Google Scholar
Applegate, S. P. 1974. A revision of the higher taxa of Orectoloboids. Journal of the Marine Biological Association of India, 14:743751.Google Scholar
Applegate, S. P. and Espinosa-Arrubarrena, L. 1996. The fossil history of Carcharodon and its possible ancestor, Cretolamna: a study in tooth identification, p. 1936. InKlimley, A., and Ainley, D.(eds.), Great White Sharks: The Biology of Carcharodon carcharias. San Diego Academic Press, San Diego, California.Google Scholar
Bancroft, E. N. 1831. On several fishes of Jamaica. Proceedings of the Committee of Science and Correspondence of the Zoological Society of London, 1:134135.Google Scholar
Bartoli, G., Sarnthein, M., Weinelt, M., Erlenkeuser, H., Garbe-Schonberg, D., and Lea, D. W. 2005. Final closure of Panama and the onset of northern hemisphere glaciation. Earth and Planetary Science Letters, 237:3344.Google Scholar
Berg, L. S. 1940. Classification of fishes both recent and fossil. Travaux de l'Institut Zoologique de l'academie des Sciences de l'U.R.S.S., Leningrad, 5:85517. (In Russian)Google Scholar
Berg, L. S. 1958. System der rezenten und fossilen Fischartigen und Fische. Deutsche Verlag Wissenschaften, Berlin, Germany, 310p.Google Scholar
Bizzarro, J. J., Smith, W. D., and Clark, T. B. 2006. Mobula munkiana. InIUCN 2011, IUCN Red List of Threatened Species. Version 2011.2, <www.iucnredlist.org>, accessed on 11 June 2012.Google Scholar
Bizzarro, J., Smith, W., Baum, J., Domingo, A., and Menni, R. 2009. Mobula hypostoma. InIUCN 2011, IUCN Red List of Threatened Species. Version 2011.2, <www.iucnredlist.org>, accessed on 11 June 2012.Google Scholar
Blainville, H. M. D. D. 1816. Prodrome d'une nouvelle distribution systematique de regne animal. Bulletin de Sciences de la Société Philomatique de Paris, Pt. 8:113124.Google Scholar
Blake, S. F. 1862. Fossil shark teeth at Panama. The Geologist, 5:316.Google Scholar
Bonaparte, C. L. 1838. Selachorum tabula analytica. Nuovi Annali delle Scienze Naturali, Bologna, Ser. 1 (2):195214.Google Scholar
Carpenter, K. E. and Niem, V. H. 1999. FAO species identification guide for fishery purposes: The living marine resources of the western Central Pacific. Vol. 3. Batoid fishes, chimaeras and bony fishes, Pt. 1 (Elopidae to Linophrynidae). Rome, FAO, 1397–2068.Google Scholar
Cappetta, H. 1980. Modification du satut generique de queleques especes de sélaciens crétacés et tertiares. Palaeovertebrata, 10:2942.Google Scholar
Cappetta, H. 2012. Handbook of Paleoichthyology. Vol. 3B. Chondrichthyes (Mesozoic and Cenozoic Elasmobranchii: Teeth). Gustav Fisher, Stuttgart, Germany, 512p.Google Scholar
Cappetta, H. 1987. Chondrichthyes II: Mesozoic and Cenozoic Elasmobranchii. G. Fischer Verlag, Stuttgart; New York, 193p.Google Scholar
Castro, J. I. 1993. The shark nursery of Bulls Bay, South Carolina, with a review of the shark nurseries of the southeastern coast of the United States. Environmental Biology of Fishes, 38:3748.Google Scholar
Clark, T. B., Smith, W. D., and Bizzarro, J. J. 2006. Mobula thurstoni. InIUCN 2011, IUCN Red List of Threatened Species. Version 2011.2, <www.iucnredlist.org>, accessed on 11 June 2012.Google Scholar
Coates, A. G. 1999. Lithostratigraphy of the Neogene strata of the Caribbean coast from Limon, Costa Rica, to Colon, Panama, p. 1740. InCollins, L. S. and Coates, A. G.(eds.), A Paleobiotic Survey of Caribbean Faunas from the Neogene of the Isthmus of Panama. Vol. 357. Bulletins of American Paleontology, Ithaca, New York.Google Scholar
Coates, A. G. and Obando, J. A. 1996. The geologic evolution of the Central American Isthmus, p. 2156. InJackson, J. B. C., Budd, A. F., and Coates, A. G.(eds.), Evolution and Environment in Tropical America. University of Chicago Press, Chicago.Google Scholar
Coates, A. G., Jackson, J. B. C., Collins, L. S., Cronin, T. M., Dowsett, H. J., Bybell, L. M., Jung, P., and Obando, J. A. 1992. Closure of the Isthmus of Panama: the near-shore marine record of Costa Rica and Western Panama. Geological Society of America Bulletin, 104:814828.2.3.CO;2>CrossRefGoogle Scholar
Coates, A. G., Aubry, M. P., Berggren, W. A., Collins, L. S., and Kunk, M. 2003. Early Neogene history of the Central American arc from Bocas del Toro, western Panama. Geological Society of America Bulletin, 115:271287.Google Scholar
Coates, A. G., Collins, L. S., Aubry, M. P., and Berggren, W. A. 2004. The geology of the Darien, Panama, and the late Miocene–Pliocene collision of the Panama arc with northwestern South America. Geological Society of America Bulletin, 116:13271344.Google Scholar
Collins, L. S. 1996. The Miocene to Recent diversity of Caribbean benthic foraminifera from the Central America Isthmus, p. 91108. InCollins, L. S. and Coates, A. G.(eds.), A Paleobiotic Survey of Caribbean Faunas from the Neogene of the Isthmus of Panama. Vol., Bulletin 357, Paleontological Research Institute, Ithaca, New York.Google Scholar
Collins, L. S., Coates, A. G., Berggren, W. A., Aubry, M. P., and Zhang, J. J. 1996. The late Miocene Panama isthmian strait. Geology, 24:687690.2.3.CO;2>CrossRefGoogle Scholar
Collins, L. S., Aguilera, O., Borne, P. F., and Cairns, S. D. 1999. A paleoenvironmental analysis of the Neogene of Caribbean Panama and Costa Rica using several phyla, p. 8187. InCollins, L. S. and Coates, A. G.(eds.), A Paleobiotic Survey of Caribbean Faunas from the Neogene of the Isthmus of Panama. Vol, Bulletin 357, Paleontological Research Institute, Ithaca, New York.Google Scholar
Compagno, L. J. V. 1973. lnterrelationships of living elasmobranchs. Zoological Journal of the Linnean Society, 53:1561.Google Scholar
Compagno, L. J. V. 1977. Phyletic relationships of living sharks and rays. American Zoologist, 17:303322.Google Scholar
Compagno, L. J. V. 1984. FAO species catalogue. Vol. 4, Sharks of the world. An annotated and illustrated catalogue of shark species known to date. Pt 2, Carcharhiniformes, FAO Fisheries Synopsis, p. 251655.Google Scholar
Compagno, L. J. V. 1988. Sharks of the Order Carcharhiniformes. Princeton University Press, Princeton, New Jersey, 486p.Google Scholar
Compagno, L. J. V. and Last, P. R. 1999. Pristidae. Sawfishes, p. 14101417. InCarpenter, K. E. and Niem, V.(eds.), FAO Identification Guide for Fishery Purposes. The Living Marine Resources of the Western Central Pacific. Food and Agriculture Organization, Rome.Google Scholar
Compagno, L. J. V. and Marshall, A. D. 2006. Rhynchobatus luebberti. InIUCN 2011, IUCN Red List of Threatened Species. Version 2011.2, <www.iucnredlist.org>, accessed on 11 June 2012.Google Scholar
Compagno Dando, L. J. V. and Flower, V. M. S., 2005. Sharks of the World. Princeton University Press, Princeton, New Jersey, 368p.Google Scholar
Cronin, T. M. and Dowsett, H. J. 1996. Biotic and oceanographic response to the Pliocene closing of the Central American Isthmus, p. 76104. InJackson, J. B. C., Budd, A. F. and Coates, A. G.(eds.), Evolution and Environment in Tropical America. University of Chicago Press, Chicago.Google Scholar
Cuvier, G. L. C. F. D. 1816. Le Règne Animal distribué d'après son organisation pour servir de base à l'histoire naturelle des animaux et d'introduction à l'anatomie comparée. Les reptiles, les poissons, les mollusques et les annélides. Deterville, Paris, 532p.Google Scholar
Cuvier, G. L. C. F. D. 1829. Le règne animal, distribué d'après son organisation, pour servir de base à l'histoire naturelle des animaux et d'introduction à l'anatomie comparée. Edition 2. Deterville, Paris, 406p.Google Scholar
Daimeries, A. 1889. Notes ichthyologiques. V. Annales de la Société royale malacologique de Belgique. Bulletin des des Séances, 24:3944.Google Scholar
De Muizon, C. and De Vries, T. J. 1985. Geology and paleontology of late Cenozoic marine deposits in the Sacaco area (Peru). Geologische Rundschau, 74:547563.Google Scholar
Donovan, S. K. and Gunter, G. C. 2001. Fossil sharks from Jamaica. Bulletin of the Mizunami Fossil Museum, 28:211215.Google Scholar
Duque-Caro, H. 1990. Neogene Stratigraphy, Paleoceanography and Paleobiogeography in Northwest South-America and the Evolution of the Panama seaway. Palaeogeography, Palaeoclimatology, Palaeoecology, 77:203234.Google Scholar
Ebert, D. A. 2003. Sharks, Rays and Chimaeras of California. University of California Press, Berkeley, 284p.Google Scholar
Ehrenbaum, E. 1914. Über Fische von Westafrika, besonders von Kamerun. Special Bulletin United States National Museum, 6 (5):193200.Google Scholar
Ehret, D. J., Hubbell, H., and Macfadden, B. J. 2009. Exceptional preservation of the white shark Carcharodon (Lamniformes, Lamnidae) from the early Pliocene of Peru. Journal of Vertebrate Paleontology, 29:113.Google Scholar
Ehret, D. J., Macfadden, B. J., Jones, D. S., Devries, T. J., Foster, D. A., and Salas-Gismondi, R. 2012. Origin of the White Shark, Carcharodon (Lamniformes: Lamnidae), based on recalibration of the late Neogene, Pisco Formation of Peru. Palaeontology, 55:11391153.Google Scholar
Euphrasen, B. A. 1790. Raja (Narinari). Kongliga Vetenskaps Akademiens nya Handlingar, Stockholm, 11:217219.Google Scholar
Evermann, B. W. and Jenkins, O. P. 1891. Report upon a collection of fishes made at Guaymas, Sonora, Mexico, with descriptions of new species. Proceedings of the United States National Museum, 14:121164.Google Scholar
Farris, D. W., Jaramillo, C., Bayona, G., Restrepo-Moreno, S. A., Montes, C., Cardona, A., Mora, A., Speakman, R. J., Glascock, M. D., Reiners, P., and Valencia, V. 2011. Fracturing of the Panamanian Isthmus during initial collision with South America. Geology, 39:10071010.Google Scholar
Garman, S. 1913. The Plagiostomia (Sharks, Skates and Rays). Memoirs of the Museum of Comparative Zoology at Harvard College, 528p.Google Scholar
Geoffroy Saint-Hilaire, E. 1817. Poissons du Nil, de la Mer Rouge et de la Méditerranée, pl. 18–27. InDescription de l'Egypte ou recueil des observations et des recherches qui ont été faites en Égypte pendant l'expedition de l'Armée français, publié par les ordres de sa Majesté-L'Empereur Napoléon le Grand.Google Scholar
Gibbes, R. W. 1848 –1849. Monograph of the fossil Squalidae of the United States. Journal of the Academy of Natural Sciences of Philadelphia, Ser. 2, Pt. 1:139206.Google Scholar
Gill, T. 1865. Note on the family of myliobatoids, and on a new species of Aetobatis. Annals of the Lyceum of Natural History of New York, 8:135138.CrossRefGoogle Scholar
Gill, T. 1872. Arrangement of the families of fishes, or Classes Pisces, Marsupiobranchii, and Leptocardii. Smithsonian Miscellaneous Collections, 247:149.Google Scholar
Gillette, D. D. 1984. A marine chondrichthyan fauna from the Miocene of Panama, and the Tertiary Caribbean faunal province. Journal of Vertebrate Paleontology, 4:172186.Google Scholar
Glikman, L. S. 1964. Sharks of the Paleogene and their stratigraphic significance. Nauka Press, Moscow, 229p. (In Russian)Google Scholar
Gottfried, M. D., Compagno, L. J. V., and Bowman, S. C. 1996. Size and skeletal anatomy of the giant megatooth shark Carcharodon megalodon, p. 5589. InKlimley, A. and Ainley, D.(eds.), Great White Sharks: The Biology of Carcharodon carcharias. Academic Press, San Diego, California.Google Scholar
Griffith, E. and Smith, C. H. 1834. The class Pisces, arranged by the Baron Cuvier, with supplementary additions, by Edward Griffith, F.R.S. and Lieut.-Col. Charles Hamilton Smith, F.R., L.S.S. InCuvier, Baron(ed.), The Animal Kingdom Arranged in Conformity with its Organization, with Additional Descriptions of all the Species Hitherto Named, and of Many Not Before Noticed, By Edward Griffith, and Others. London, 680 p.Google Scholar
Hendy, A. J. W. 2013. Spatial and stratigraphic variation of marine paleoenvironments in the upper Miocene Gatun Formation, Isthmus of Panama. Palaios, 28:210227.Google Scholar
Herman, J., Hovestadt-Euler, M., Hovestadt, D. C., and Stehmann, M. 1997. Contributions to the study of the comparative morphology of teeth and other relevant ichthyodorulites in living superaspecific taxa of Chondrichthyan fishes. Pt. B: Batomorphii No. 2: Order: Rajiformes—Suborder: Pristoidei—Family: Pristidae—Genera: Anoxypristis and Pristis; No. 3: Suborder: Rajoidei—Superfamily: Rhinobatoidea—Families: Rhinidae—Genera: Rhina and Rhynchobatus and Rhinobatidae—Genera: Aptychotrema, Platyrhina, Plathyrhinoidis, Rhinobatos, Trygonorrhina, Zanobatus and Zapteryx. Bulletin de l'Institut Royal des Sciences Naturelles de Belgique, Biologie, 67:107162.Google Scholar
Herman, J., Hovestadt-Euler, M., Hovestadt, D. C., and Stehmann, M. 1998. Contributions to the study of the comparative morphology of teeth and other relevant ichthyodorulites in living supra-specific taxa of Chondrichthyan fishes. Part B: Batomorphii No. 4a: Order Rajiformes—Suborder Myliobatoidei—Superfamily Dasyatoidea—Family Dasyatidae—Subfamily Dasyatinae—Genera: Amphotistius, Dasyatis, Himantura, Pastinachus, Pteroplatytrygon, Taeniura, Urogymnus and Urolophoides (incl. supraspecific taxa of uncertain status and validity), Superfamily Myliobatoidea—Family Gymnuridae—Genera: Aetoplatea and Gymnura, Superfamily Plesiobatoidea—Family Hexatrygonidae—Genus: Hexatrygon. Bulletin de l'Institut Royal des Sciences naturelles de Belgique, Biologie, 68:145197.Google Scholar
Herman, J., Hovestadt-Euler, M., Hovestadt, D. C., and Stehmann, M. 1999. Contributions to the study of the comparative morphology of teeth and other relevant ichthyodorulites in living supraspecific taxa of chondrichthyan fishes. Part B: Batomorphii. No.4b: Order Rajiformes—Suborder Myliobatoidei—Superfamily Dasyatoidea—Family Dasyatididae—Subfamily Dasyatinae—Genus: Taeniura, Urogymnus, Urolophoides—Subfamily Potamotrygoninae—Genera: Disceus, Pleisiotrygon, and Potamotrygon (incl. supraspecific taxa of uncertain status and validity), Family Urolophidae—Trygonoptera, Urolophus and Urotrygon—Superfamily Myliobatidea—Family: Gymnuridae—Genus: Aetoplatea. Bulletin de l'Institut Royal des Sciences naturelles de Belgique, Biologie, 69:161200.Google Scholar
Herman, J., Hovestadt-Euler, M., Hovestadt, D. C., and Stehmann, M. 2000. Contributions to the study of the comparative morphology of teeth and other relevant ichthyodorulites in living superaspecific taxa of Chondrichthyan fishes. Part B: Batomorphii 4c: Order: Rajiformes—Suborder Myliobatoidei—Superfamily Dasyatoidea—Family Dasyatidae—Subfamily Dasyatinae—Genus: Urobatis, Subfamily Potamotrygoninae—Genus: Pomatotrgon, Superfamily Plesiobatoidea—Family Plesiobatidae—Genus: Plestiobatis, Superfamily Myliobatoidea—Family Myliobatidae Subfamily Myliobatinae—Genera: Aetobatus, Aetomylaeus, Myliobatis and Pteromylaeus, Subfamily Rhinopterinae—Genus: Rhinoptera and Subfamily Mobulinae—Genera: Manta and Mobula. Addendum 1 to 4a: erratum to Genus Pteroplatytrygon. Bulletin de l'Institut Royal des Sciences Naturelles de Belgique, Biologie, 70:567.Google Scholar
Heupel, M. R., Carlson, J. K., and Simpfendorfer, C. A. 2007. Shark nursery areas: concepts, definition, characterization and assumptions. Marine Ecology Progress Series, 337:287297.Google Scholar
Huxley, T. H. 1880. On the application of the laws of evolution to the arrangement of the Vertebrata, and more particularly of the Mammalia. Proceedings of the Zoological Society of London, 43:649662.Google Scholar
Iturralde-Vinent, M. 1969. Principal characteristics of Cuban Neogene stratigraphy. American Association Petroleum Geologists Bulletin, 53:19381955.Google Scholar
Iturralde-Vinent, M., Hubbell, G., and Rojas, R. 1996. Catalogue of Cuban fossil Elasmobranchii (Paleocene to Pliocene) and paleogeographic implications of their lower to middle Miocene occurrence. Journal of the Geological Society of Jamaica, 31:721.Google Scholar
Jackson, J. B. C. and Budd, A. F. 1996. Evolution and environment: introduction and overview, p. 120. InJackson, J. B. C., Budd, A. F., and Coates, A. G.(eds.), Evolution and Environment in Tropical America. University of Chicago Press, Chicago.Google Scholar
Jackson, J. B. C., Todd, J. A., Fortunato, H., and Jung, P. 1999. Diversity and assemblages of Neogene Caribbean Mollusca of lower Central America, p. 193230. InCollins, L. S. and Coates, A. G.(eds.), A Paleobiotic Survey of Caribbean Faunas from the Neogene of the Isthmus of Panama. Vol. 357, Bulletins of American Paleontology, Ithaca, New York.Google Scholar
Jordan, D. S. 1888. A Manual of Vertebrate Animals of the Northern United States, Including the District North and East of the Ozark Mountains, South of the Laurentian Hills, North of Virginia, and East of the Missouri River, Inclusive of Marine Species (fifth edition). Manual Vert., Chicago, 375p.Google Scholar
Jordan, D. S. and Evermann, B. W. 1896. The fishes of North and Middle America. Bulletin of the United States National Museum, 47:11240.Google Scholar
Jordan, D. S. and Hannibal, H. 1923. Fossil sharks and rays of the Pacific Slope of North America. Bulletin of the Southern California Academy of Sciences, 22:2763.Google Scholar
Kent, B. W. 1994. Fossil Sharks of the Chesapeake Bay Region. Egan Rees and Boyer, Inc., Columbia, Maryland, 146p.Google Scholar
Kirby, M. X., Jones, D. S., and MacFadden, B. J. 2008. Lower Miocene stratigraphy along the Panama Canal and its bearing on the Central American Peninsula. PLoS ONE, 3 (7):e2791.CrossRefGoogle ScholarPubMed
Kirby, M. X. and MacFadden, B. J. 2005. Was Central America an archipelago or peninsula in the middle Miocene? A test using land-mammal body size. Palaeogeography, Palaeoclimatology, Palaeoecology, 228:193202.Google Scholar
Laurito, C. A. 1999. Los selaceos fósiles de la localidad de Alto Guayacan (y otros ictiolitos asociados), Mioceno Superior-Plioceno Inferior de la Formación Uscari, Provincia de Limón, Costa Rica, Editora San Jose, San Jose, 168p.Google Scholar
Leder, R. M. 2005. Eozäne Carchariniden und Triakiden (Elasmobranchii) der Krim und Kasachstans, Universität Leipzig, Deutschland, 98p.Google Scholar
Lesueur, C. A. 1818. Description of several new species of North American fishes. Journal of the Philadelphia Academy of Natural Sciences, 1:222235.Google Scholar
Lloyd, R. E. 1908. On two new species of eagle-rays (Myliobatidae), with notes on the skull of the genus Ceratoptera. Records of the Indian Museum, 2:175180, pls. 4, 5, 10.Google Scholar
Long, D. J. 1993. Late Miocene and early Pliocene fish assemblages from the north central coast of Chile. Tertiary Research, 14:117126.Google Scholar
Longbottom, A. E. 1979. Miocene sharks' teeth from Ecuador. Bulletin of the British Museum (Natural History) Geology, 32:5770.Google Scholar
MacPhee, R. D. E., Iturralde-Vinent, M. A., and Gaffney, E. S. 2003. Domo de Zaza, an early Miocene vertebrate locality in south-central Cuba, with notes on the tectonic evolution of Puerto Rico and the Mona Passage. American Museum Novitates, 3394:142.Google Scholar
Martin, A. P., Naylor, G. J. P., and Palumbi, S. R. 1992. Rates of mitochondrial DNA evolution in sharks are slow compared with mammals. Nature, 357:153155.Google Scholar
McEachran, J. D., Dunn, K. A., and Miyake, T. 1996. Interrelationships of the batoid fishes (Chondrichthyes: Batoidei), p. 63–84, figs 1–13. InStiassny, M. L. J., Parenti, L.R. and Johnson, G.D.(eds.), Interrelationships of Fishes. Academic Press, San Diego, London.Google Scholar
Michael, S. W. 1993. Reef Sharks and Rays of the World. A Guide to their Identification, Behavior, and Ecology. Sea Challengers, Monterey, California, 107p.Google Scholar
Montes, C., Bayona, G. A., Cardona, A. A., Bush, D. M., Silva, C. A., Morón, S. E., Hoyos, N., Ramírez, D. A., Jaramillo, C. A., and Valencia, V. 2012a. Arc-continent collision and orocline formation: closing of the Central American seaway. Journal of Geophysical Research, 117:B04105.Google Scholar
Montes, C., Cardona, A., Mcfadden, R., Morón, S. E., Silva, C. A., Restrepo-Moreno, S., Ramírez, D. A., Hoyos, N., Wilson, J., Farris, D., Bayona, G. A., Jaramillo, C. A., Valencia, V., Bryan, J., and Flores, J. A. 2012b. Evidence for middle Eocene and younger land emergence in central Panama: implications for Isthmus closure. Geological Society of America Bulletin, 124:780799.Google Scholar
Morgan, G. S. 1994. Miocene and Pliocene marine mammal faunas from the Bone Valley Formation of central Florida, p. 239268. InDeméré, A. B. T. A.(ed.), Contributions in Marine Mammal Paleontology Honoring Frank C. Whitmore Jr. Proceedings of the San Diego Society of Natural History, San Diego.Google Scholar
Müller, J. and Henle, F. G. J. 1837. Gattungen der Haifische und Rochen nach einer vom ihm mit Hrn Henle unternomenen gemeinschaftlichen Arbeit über die Naturgeschichte der Knorpelfische. Bericht über die zur Bekanntmachung geeigneten Verhanlungen der Academie Wissenschaften Berlin, 1937:111118.Google Scholar
Müller, J. and Henle, F. G. J. 1838. On the generic characters of cartilaginous fishes. Magazine of Natural History, 2:3391.Google Scholar
Nardo, J. D. 1827. Prodromus observationum et disquisitionum ichthyologiae Adriaticae. Oken's Isis, 20:472631.Google Scholar
Naylor, G. J. P. and Marcus, L. F. 1994. Identifying isolated shark teeth of the genus Carcharhinus to species: relevance for tracking phyletic change through the fossil record. American Museum Novitates, 3109:153.Google Scholar
Newkirk, D. R. and Martin, E. E. 2009. Circulation through the Central American seaway during the Miocene carbonate crash. Geology, 37:8790.Google Scholar
Nieves-Rivera, A. M., Ruiz-Yantin, M., and Gottfried, M. D. 2003. New record of the Lamnid Shark Carcharodon megalodon from the middle Miocene of Puerto Rico. Caribbean Journal of Science, 39:223227.Google Scholar
Notarbartolo Di Sciara, G. 1987. A revisionary study of the genus Mobula Rafinesque, 1810 (Chondrichthyes: Mobulidae), with the description of a new species. Zoological Journal of the Linnaean Society, 91:191.Google Scholar
Nyberg, K. G., Ciampaglio, C. N., and Wray, G. A. 2006. Tracing the Ancestry of the Great White Shark, Carcharodon carcharias, using morphometric analyses of fossil teeth. Journal of Vertebrate Paleontology, 26:806814.Google Scholar
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., O'Hara, R. G., Simpson, G. L., Solymos, P., Stevens, M. H. H., and Wagner, H. 2010. Vegan: community ecology package. R package, version 1.17–0.Google Scholar
Peron, F. and Lesueur, C. A. 1822. Descripton of a Squalus, of a very large size, which was taken on the coast of New Jersey. Journal of the Philadelphia Academy of Natural Sciences, 2:343352.Google Scholar
Pimiento, C., Ehret, D. J., Macfadden, B. J., and Hubbell, G. 2010. Ancient nursery area for the extinct giant shark Megalodon from the Miocene of Panama. Plos One, 5 (5):e10552.Google Scholar
Pimiento, C., Gonzalez, G., Hendy, A., Jaramillo, C., MacFadden, B. J., Montes, C., Suarez, S. C., and Shippritt, M. 2013. Early Miocene chondrichthyans from the Culebra Formation, Panama: a window into marine vertebrate faunas before closure of the Central American Seaway. Journal of South American Earth Sciences, 42:159170.Google Scholar
Pizarro, D. 1975. Bioestratigrafía de la formación Uscari en base en foraminíferos plantónicos, Mioceno medio-superior, Costa Rica. Universidad de Costa Rica, San Ramon, 33p.Google Scholar
Poey, F. 1868. Synopsis piscium cubensium. Catalogo Razonado de los peces de la isla de Cuba. Repertorio Fisico-Natural de la Isla de Cuba, 2:279484.Google Scholar
Poey, F. 1876. Enumeracio piscium cubensium. Anales Sociedad Española Historia Natural Madrid, 5:131218.Google Scholar
Portell, R. W., Hubbell, G., Donovan, S. K., Green, J. L., Harper, D. A. T., and Pickerill, R. 2008. Miocene sharks in the Kendeace and Grand Bay formations of Carriacou, The Grenadines, Lesser Antilles. Caribbean Journal of Science, 44:279286.Google Scholar
Purdy, R. W. 1996. Paleoecology of fossil white sharks, p. 6778. InKlimley, A. and Ainley, D.(eds.), Great White Sharks: The Biology of Carcharodon carcharias. Academic Press, San Diego, California.Google Scholar
Purdy, R. W., Schneider, V. P., Applegate, S. P., Mclellan, J. H., Meyer, R. L., and Slaughter, B. H. 2001. The neogene sharks, rays, and bony fishes from Lee Creek Mine, Aurora, North Carolina. Smithsonian Contributions to Paleobiology, 90:71202.Google Scholar
Pyenson, N. D., Irmis, R. B., Lipps, J. H., Barnes, L. G., Mitchell, E. D., and McLeod, S. A. 2009. Origin of a widespread marine bonebed deposited during the middle Miocene Climatic Optimum. Geology, 37:519522.Google Scholar
R Development Core Team. 2012. R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. ISBN 3-900051-07-0, <www.r-project.org/>..>Google Scholar
Rafinesque, C. S. 1810. Caratteri di alcuni nuovi generi e nouve specie di Animali e Piante della Sicilia con varie osservazioni sopra I medesimi, Palermo, 105p.Google Scholar
Reis, M. A. F. 2005. Chondrichthyan fauna from the Pirabas Formation, Miocene of northern Brazil, with comments on paleobiogeography. Anuaìrio do Instituto de Geociencias, 28:3158.Google Scholar
Rosen, D. E. 1975. A vicariance model of Caribbean biogeography. Systematic Zoology, 24:431464.Google Scholar
Rüppell, W. P. E. S. 1835–1838. Neue Wirbelthiere zu der Fauna von Abyssinien gehörig entdeckt und beschrieben von Dr. Eduard Rüppell. Fisches des rothen Meeres, Frankfurt am Main, 148p.Google Scholar
Schwartz, F. 2007. Tail spine characteristics of stingrays (Order Myliobatiformes) frequenting the FAO area 61 (20°N 120°E–50°N 150°E) of the Northwest Pacific Ocean. The Raffles Bulletin of Zoology, Supplement no. 14:121130.Google Scholar
Serena, F., Notarbartolo Di Sciara, G., and Mancusi, C. 2009. Taeniurops grabata. InIUCN 2011, IUCN Red List of Threatened Species. Version 2011.2, <www.iucnredlist.org>, accessed on 11 June 2012.Google Scholar
Shimada, K. 2002. Dental homologies in lamniform sharks (Chondrichthyes: Elasmobranchii). Journal of Morphology, 251:3872.Google Scholar
Smith, W.D. and Bizzarro, J. J. 2006. Rhinoptera steindachneri. InIUCN 2011, IUCN Red List of Threatened Species. Version 2011.2, <www.iucnredlist.org>, accessed on 11 June 2012.Google Scholar
Taylor, G. D. 1975. The Geology of the Limón area of Costa Rica. Ph.D. Dissertation. Louisiana State University, Baton Rouge.Google Scholar
Tedford, R. H., Albright, L. B. III, Barnosky, A. D., Ferrusquía-Villafranca, I., Hunt, R. M. Jr., Storer, J. E., Swisher, C. C. III, Voorhies, M. R., Webb, S. D., and Whistler, D. P. 2004. Mammalian biochronology of the Arikareean through Hemphillian interval (late Oligocene through early Pliocene epochs), p. 169231. InWoodburne, M. O.(ed.), Late Cretaceous and Cenozoic Mammals of North America: Biostratigraphy and Geochronology. Columbia University Press, New York.Google Scholar
Teranes, J. L., Geary, D. H., and Bemis, B. E. 1996. The oxygen isotopic record of seasonality in Neogene Bivalves from the Central American Isthmus, p. 105129. InJackson, J. B. C., Budd, F., and Coates, A. G.(eds.), Evolution and Environment in Tropical America. University of Chicago Press, Chicago.Google Scholar
Uhen, M. D., Coates, A. G., Jaramillo, C. A., Montes, C., Pimiento, C., Rincon, A., Strong, N., and Velez-Juarbe, J. 2010. Marine mammals from the Miocene of Panama. Journal of South American Earth Sciences, 30:167175.Google Scholar
Ward, L. W. and Bohaska, D. J. 2008. Synthesis of paleontological and stratigraphic investigations at the Lee Creek mine, Aurora, N.C. (1958–2007). InRay, D. J. B. C. E., Koretsky, I. A., Ward, L. W., and Barnes, L. G.(eds.), Geology and Paleontology of the Lee Creek Mine, North Carolina, IV. Virginia Museum of Natural History Special Publication 14.Google Scholar
Ward, D. and Bonavia, C. 2001. Additions to, and a review of, the Miocene shark and ray fauna of Malta. The Central Mediterranean Naturalist, 3:131146.Google Scholar
Whitley, G. P. 1929. Studies in ichthyology. Records of the Australian Museum, 17:101143.Google Scholar
Whitley, G. P. 1940. The fishes of Australia, Pt. I: The sharks, rays, devilfish, and other primitive fishes of Australia and New Zealand. Royal Zoological Society of New South Wales, Sydney, 280p.Google Scholar
Woodring, W. P. 1957–1982, Geology and paleontology of Canal Zone and adjoining parts of Panama. U.S. Geological Survey Professional Paper 306 (A–F).Google Scholar
Woodring, W. P. 1966. The Panama land bridge as a sea barrier. Proceedings of the American Philosophical Society, 110:425433.Google Scholar
Woodring, W. P. 1974. The Miocene Caribbean faunal Province and its subprovinces. Verhandlungen der naturforschenden Gesellschaft in Basel, 849:209213.Google Scholar