Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-18T07:32:17.497Z Has data issue: false hasContentIssue false

Competitive Pairing and the Chemistry of Coadsorbed Hydrogen and Halogens on Ge(100)

Published online by Cambridge University Press:  22 February 2011

Yuemei L. Yang
Affiliation:
Department of Chemistry and Rice Quantum Institute, Rice University, Houston, TX 77251–1892
Stephen M. Cohen
Affiliation:
Department of Chemistry and Rice Quantum Institute, Rice University, Houston, TX 77251–1892
Mark P. D'Evelyn
Affiliation:
Department of Chemistry and Rice Quantum Institute, Rice University, Houston, TX 77251–1892
Get access

Abstract

The chemistry of coadsorbed H and X (X=C1, Br) on semiconductor surfaces is important in epitaxial growth of silicon from chlorosilanes and of SixGe1−x alloys, in hydrogenating/ halogenating cycles in atomic layer epitaxy, and also provides an interesting model system, yet has received little attention to date. We have investigated the interaction of HC1 and HBr with Ge(100) by temperature-programmed desorption, and find that H2, HCl and HBr each desorb with near-first-order kinetics near 570–590 K and that GeCl2 and GeBr2 desorb with near-second-order kinetics near 675 K and 710 K, respectively. Analysis of the desorption kinetics of H2 and HX provides evidence that adsorbed H and X atoms pair preferentially in a qualitatively similar way as H atoms adsorbed alone on Ge(100)2×1 or Si(100)2×1 and that pairing of H+X occurs in competition with pairing of H+H.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nishizawa, J., Aoki, K., Suzuki, S., Kikuchi, K., J. Electrochem Soc. 137, 1898 (1990).Google Scholar
2. Hukka, T. I., Rawles, R. I., and D'Evelyn, M. P., Thin Solid Films (in press).Google Scholar
3. Coon, P. A., Gupta, P., Wise, M. L., and George, S. M., J. Vac. Sci. Technol. A 10, 324 (1992).Google Scholar
4. Yarmoff, J. A., Shuh, D. K., Durbin, T. D., Lo, C. W., Lapiano-Smith, D. A., McFeely, F. R., and Himpsel, F. J., J. Vac. Sci. Technol. A 10, 2303 (1992).Google Scholar
5. Cohen, S. M., Yang, Y. L., Rouchouze, E., Jin, T., and D'Evelyn, M. P., J. Vac. Sci. Technol. A 10, 2166 (1992).Google Scholar
6. Cohen, S. M. and D'Evelyn, M. P., J. Vac. Sci. Technol. A 9, 2414 (1991).Google Scholar
7. Smith, V. T., Struck, L. M., and D'Evelyn, M. P., to be published.Google Scholar
8. Leung, K. T., Terminello, L. J., Hussain, Z., Zhang, X. S., Hayashi, T., and Shirley, D. A., Phys. Rev. B 38, 8241 (1988).Google Scholar
9. Kuhr, H. J., Ranke, W., and Finster, J., Surf. Sci. 178, 171 (1986).Google Scholar
10. Cohen, S. M., Hukka, T. I., Yang, Y. L., and D'Evelyn, M. P., Thin Solid Films (in press).Google Scholar
11. D'Evelyn, M. P., Cohen, S. M., Rouchouze, E., and Yang, Y. L., J. Chem. Phys. (in press).Google Scholar
12. Eres, D. and Sharp, J. W., Appl. Phys. Lett. 60, 2764 (1992).Google Scholar
13. Cohen, S. M., Rouchouze, E., and D'Evelyn, M. P., to be published.Google Scholar
14. Redhead, P.A., Vacuum 12, 203 (1962).Google Scholar
15. Sinniah, K., Sherman, M. G., Lewis, L. B., Weinberg, W. H., Yates, J. T. Jr, and Janda, K. C., J. Chem. Phys. 92, 5700 (1990).Google Scholar
16. Wise, M. L., Koehler, B. G., Gupta, P., Coon, P. A., and George, S. M., Surf. Sci. 258, 166(1991).Google Scholar
17. D'Evelyn, M. P., Yang, Y. L., and Sutcu, L. F., J. Chem. Phys. 96, 852 (1992).Google Scholar
18. Höfer, U., Li, L., and Heinz, T. F., Phys. Rev. B 45, 9485 (1992).Google Scholar
19. Boland, J. J., Phys. Rev. Lett. 67, 1539 (1991).Google Scholar
20. Yang, Y. L., Cohen, S. M., and D'Evelyn, M. P., in preparation.Google Scholar