Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-18T07:52:57.665Z Has data issue: false hasContentIssue false

New insights into polymer solar cells stability: The crucial role of PCBM oxidation

Published online by Cambridge University Press:  13 July 2018

Anthony Perthué
Affiliation:
CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, Clermont–Ferrand F-63000, France
Thérèse Gorisse
Affiliation:
IMS, CNRS, UMR 5218, Bordeaux INP, ENSCBP, Universite de Bordeaux, Talence F-33405, France
Hugo Santos Silva
Affiliation:
CNRS/Universite de Pau & Pays Adour, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux – IPREM, UMR 5254, Pau 64000, France
Christian Lombard
Affiliation:
Université Grenoble Alpes, INAC-SPRAM, Grenoble F-38000, France; CNRS, INAC-SPRAM, Grenoble F-38000, France; and CEA, INAC-SPRAM, Grenoble F-38000, France
Didier Bégué
Affiliation:
CNRS/Universite de Pau & Pays Adour, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux – IPREM, UMR 5254, Pau 64000, France
Piétrick Hudhomme
Affiliation:
MOLTECH-Anjou, Université d’Angers, Angers F-49045, France
Brigitte Pépin-Donat
Affiliation:
Université Grenoble Alpes, INAC-SPRAM, Grenoble F-38000, France; CNRS, INAC-SPRAM, Grenoble F-38000, France; and CEA, INAC-SPRAM, Grenoble F-38000, France
Agnès Rivaton*
Affiliation:
CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, Clermont–Ferrand F-63000, France
Guillaume Wantz*
Affiliation:
IMS, CNRS, UMR 5218, Bordeaux INP, ENSCBP, Universite de Bordeaux, Talence F-33405, France
*
a)Address all correspondence to these authors. e-mail: agnes.rivaton@uca.fr
Get access

Abstract

Fullerene derivatives have been ubiquitous as an electron-accepting material in organic photovoltaic solar cells (OSCs). We consider whether and why traces of PCBM oxidation products should be seen as electronic defects impairing the performance of OSCs. Thin PCBM deposits were first illuminated under ambient air for a few minutes, thus revealing the extraordinary easiness of oxidizing PCBM. The charge transfer in polymer:PCBMox bulk heterojunctions was then studied. As a result of a few minutes of PCBM photooxidation, the electron transfer from the polymer to two types of PCBMox species was shown to occur at the expense of the transfer to pristine PCBM. Such modifications to the molecular structure of PCBM and to the charge transfer at the nanoscale were finally correlated with a dramatic loss in the device’s photovoltaic performance at the macroscale. This study clearly indicates the need to integrate photooxidation-resistant electron-accepting materials into OSCs to extend their lifetime.

Type
Invited Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Green, M.A., Emery, K., Hishikawa, Y., Warta, W., and Dunlop, E.D.: Solar cell efficiency tables (version 48): Solar cell efficiency tables (version 48). Prog. Photovoltaics Res. Appl. 24, 905913 (2016).CrossRefGoogle Scholar
Baran, D., Ashraf, R.S., Hanifi, D.A., Abdelsamie, M., Gasparini, N., Röhr, J.A., Holliday, S., Wadsworth, A., Lockett, S., Neophytou, M., Emmott, C.J.M., Nelson, J., Brabec, C.J., Amassian, A., Salleo, A., Kirchartz, T., Durrant, J.R., and McCulloch, I.: Reducing the efficiency–stability–cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. Nat. Mater. 16, 363369 (2017).Google Scholar
Cheng, P. and Zhan, X.: Stability of organic solar cells: Challenges and strategies. Chem. Soc. Rev. 45, 25442582 (2016).Google Scholar
Grossiord, N., Kroon, J.M., Andriessen, R., and Blom, P.W.M.: Degradation mechanisms in organic photovoltaic devices. Org. Electron. 13, 432456 (2012).CrossRefGoogle Scholar
Rivaton, A., Tournebize, A., Gaume, J., Bussière, P-O., Gardette, J-L., and Therias, S.: Photostability of organic materials used in polymer solar cells. Polym. Int. 63, 13351345 (2014).Google Scholar
Gardette, J-L., Colin, A., Trivis, S., German, S., and Therias, S.: Impact of photooxidative degradation on the oxygen permeability of poly(ethyleneterephthalate). Polym. Degrad. Stab. 103, 3541 (2014).Google Scholar
Silva, H.S., Cresson, J., Rivaton, A., Bégué, D., and Hiorns, R.C.: Correlating geometry of multidimensional carbon allotropes molecules and stability. Org. Electron. 26, 395399 (2015).CrossRefGoogle Scholar
Bastos, J.P., Voroshazi, E., Fron, E., Brammertz, G., Vangerven, T., van der Auweraer, M., Poortmans, J., and Cheyns, D.: Oxygen-induced degradation in C60-based organic solar cells: Relation between film properties and device performance. ACS Appl. Mater. Interfaces 8, 97989805 (2016).CrossRefGoogle ScholarPubMed
Matsuo, Y., Ozu, A., Obata, N., Fukuda, N., Tanaka, H., and Nakamura, E.: Deterioration of bulk heterojunction organic photovoltaic devices by a minute amount of oxidized fullerene. Chem. Commun. 48, 38783880 (2012).Google Scholar
Rivaton, A., Manceau, M., Chambon, S., Gardette, J-L., Guillerez, S., and Lemaître, N.: Light-induced degradation of the active layer of polymer-based solar cells. Polym. Degrad. Stab. 95, 278284 (2010).CrossRefGoogle Scholar
Tournebize, A., Bussière, P-O., Rivaton, A., Gardette, J-L., Medlej, H., Hiorns, R.C., Dagron-Lartigau, C., Krebs, F.C., and Norrman, K.: New insights into the mechanisms of photodegradation/stabilization of P3HT:PCBM active layers using poly(3-hexyl-d13-thiophene). Chem. Mater. 25, 45224528 (2013).Google Scholar
Manceau, M., Rivaton, A., and Gardette, J.L.: Photochemical stability of materials for OPV. In Stability and Degradation of Organic and Polymer Solar Cells, Krebs, F.C., ed. (Wiley Interscience, Chichester, United Kingdom, 2012); pp. 71108.Google Scholar
Karuthedath, S., Sauermann, T., Egelhaaf, H.J., Wannemacher, R., Brabec, C.J., and Lüer, L.: The effect of oxygen induced degradation on charge carrier dynamics in P3HT:PCBM and Si-PCPDTBT:PCBM thin films and solar cells. J. Mater. Chem. A 3, 33993408 (2015).Google Scholar
Seemann, A., Sauermann, T., Lungenschmied, C., Armbruster, O., Bauer, S., Egelhaaf, H-J., and Hauch, J.: Reversible and irreversible degradation of organic solar cell performance by oxygen. Sol. Energy 85, 12381249 (2011).CrossRefGoogle Scholar
Susarova, D.K., Piven, N.P., Akkuratov, A.V., Frolova, L.A., Polinskaya, M.S., Ponomarenko, S.A., Babenko, S.D., and Troshin, P.A.: ESR spectroscopy as a powerful tool for probing the quality of conjugated polymers designed for photovoltaic applications. Chem. Commun. 51, 22392241 (2015).Google Scholar
Pépin-Donat, B., Ottone, C., Lombard, C., Lefrançois, A., Morell, C., Reiss, P., and Sadki, S.: Electron paramagnetic resonance tracing of electronic transfers in push–pull copolymers/PCBM or nanocrystal composites. J. Phys. Chem. B 118, 2064720660 (2014).Google Scholar
Tournebize, A., Rivaton, A., Gardette, J-L., Lombard, C., Pépin-Donat, B., Beaupré, S., and Leclerc, M.: How photoinduced crosslinking under operating conditions can reduce PCDTBT-based solar cell efficiency and then stabilize it. Adv. Energy Mater. 4, 1301530 (2014).CrossRefGoogle Scholar
Niklas, J. and Poluektov, O.G.: Organic photovoltaics: Charge transfer processes in OPV materials as revealed by EPR spectroscop. Adv. Energy Mater. 7, 1602226 (2017).CrossRefGoogle Scholar
Salvador, M., Gasparini, N., Perea, J.D., Paleti, S.H., Distler, A., Inasaridze, L.N., Troshin, P.A., Lüer, L., Egelhaaf, H.J., and Brabec, C.: Suppressing photooxidation of conjugated polymers and their blends with fullerenes through nickel chelates. Energy Environ. Sci. 10, 20052016 (2017).Google Scholar
Dang, M.T., Hirsch, L., and Wantz, G.: P3HT:PCBM, best seller in polymer photovoltaic research. Adv. Mater. 23, 35973602 (2011).Google Scholar
Neese, F.: The ORCA program system. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 7378 (2012).Google Scholar
Dutta, A.K., Neese, F., and Izsak, R.: Speeding up equation of motion coupled cluster theory with the chain of spheres approximation. J. Chem. Phys. 144, 034102 (2016).Google Scholar
Ganyushin, D. and Neese, F.: A fully variational spin-orbit coupled complete active space selfconsistent field approach: Application to electron paramagnetic resonance g-tensors. J. Chem. Phys. 138, 104113 (2013).CrossRefGoogle ScholarPubMed
Sandhoefer, B. and Neese, F.: One-electron contributions to the g-tensor for second-order Douglas–Kroll–Hess theory. J. Chem. Phys. 137, 094102 (2012).CrossRefGoogle Scholar
Distler, A., Sauermann, T., Egelhaaf, H-J., Rodman, S., Waller, D., Cheon, K-S., Lee, M., and Guldi, D.M.: The effect of PCBM dimerization on the performance of bulk heterojunction solar cells. Adv. Energy Mater. 4, 1300693 (2014).Google Scholar
Dzwilewski, A., Wågberg, T., and Edman, L.: Photo-induced and resist-free imprint patterning of fullerene materials for use in functional electronics. J. Am. Chem. Soc. 131, 40064011 (2009).CrossRefGoogle ScholarPubMed
Heumueller, T., Mateker, W.R., Distler, A., Fritze, U.F., Cheacharoen, R., Nguyen, W.H., Biele, M., Salvador, M., von Delius, M., Egelhaaf, H-J., McGehee, M.D., and Brabec, C.J.: Morphological and electrical control of fullerene dimerization determines organic photovoltaic stability. Energy Environ. Sci. 9, 247256 (2016).Google Scholar
Zhou, P., Dong, Z-H., Rao, A.M., and Eklund, P.C.: Reaction mechanism for the photopolymerization of solid fullerene C60. Chem. Phys. Lett. 211, 337 (1993).Google Scholar
Eklund, P.C., Rao, A.M., Zhou, P., Wang, Y., and Holden, J.M.: Photochemical transformation of C60 and C70 films. Thin Solid Films 257, 185203 (1995).Google Scholar
Chambon, S., Rivaton, A., Gardette, J-L., and Firon, M.: Photo- and thermal degradation of MDMO-PPV:PCBM blends. Sol. Energy Mater. Sol. Cells 91, 394398 (2007).Google Scholar
Reese, M.O., Nardes, A.M., Rupert, B.L., Larsen, R.E., Olson, D.C., Lloyd, M.T., Shaheen, S.E., Ginley, D.S., Rumbles, G., and Kopidakis, N.: Photoinduced degradation of polymer and polymer-fullerene active layers: Experiment and theory. Adv. Funct. Mater. 20, 34763483 (2010).Google Scholar
Taylor, R., Barrow, M.P., and Drewello, T.A.: C60 degrades to C120O. Chem. Commun., 24972498 (1998).Google Scholar
Paul, P., Bolskar, R.D., Clark, A.M., and Reed, C.A.: The origin of the ‘spike’ in the EPR spectrum of C60. Chem. Commun., 12291230 (2000).Google Scholar
De Ceuster, J., Goovaerts, E., Bouwen, A., Hummelen, J.C., and Dyakonov, V.: High-frequency (95 GHz) electron paramagnetic resonance study of the photoinduced charge transfer in conjugated polymer–fullerene composites. Phys. Rev. B 64, 195206 (2001).Google Scholar
Niklas, J., Mardis, K.L., Banks, B.P., Grooms, G.M., Sperlich, A., Dyakonov, V., Beaupre, S., Leclerc, M., Xu, T., Yu, L., and Poluektov, O.G.: Highly-efficient charge separation and polaron delocalization in polymer–fullerene bulk-heterojunctions: A comparative multi-frequency EPR and DFT study. Phys. Chem. Chem. Phys. 15, 95629574 (2013).Google Scholar
Poluektov, O.G., Filippone, S., Martin, N., Sperlich, A., Deibel, C., and Dyakonov, V.: Spin signatures of photogenerated radical anions in polymer–[70]fullerene bulk heterojunctions: High frequency pulsed EPR spectroscopy. J. Phys. Chem. B 114, 1442614429 (2010).Google Scholar
Mardis, K.L., Webb, J.N., Holloway, T., Niklas, J., and Poluektov, O.G.: Electronic structure of fullerene acceptors in organic bulk-heterojunctions: A combined EPR and DFT study. J. Phys. Chem. Lett. 6, 47304735 (2015).Google Scholar
Konkin, A., Ritter, U., Scharff, P., Mamin, G., Aganov, A., Orlinskii, S., Krinichnyi, V., Egbe, D.A.M., Ecke, G., and Romanus, H.: Multifrequency X,W-band ESR study on photo-induced ion radical formation in solid films of mono- and di-fullerenes embedded in conjugated polymers. Carbon 77, 1117 (2014).CrossRefGoogle Scholar
Reed, C.A. and Bolskar, R.D.: Discrete fulleride anions and fullerenium cations. Chem. Rev. 100, 10751120 (2000).CrossRefGoogle ScholarPubMed
Rapta, P., Bartl, A., Gomorov, A., Stasko, A., and Dunsch, L.: In situ ESR/Vis/NIR spectroelectrochemistry of [60]fullerene: The origin of ESR “spikes” and the reactivity of pristine fullerene anions. ChemPhysChem 3, 351355 (2002).3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Sperlich, A., Kraus, H., Deibel, C., Blok, H., Schmidt, J., and Dyakonov, V.: Reversible and irreversible interactions of poly(3-hexylthiophene) with oxygen studied by spin-sensitive methods. J. Phys. Chem. B 115, 1351313518 (2011).Google Scholar
Santos Silva, H., Fraga Domínguez, I., Perthué, A., Topham, P.D., Bussière, P-O., Hiorns, R.C., Lombard, C., Rivaton, A., Bégué, D., and Pépin-Donat, B.: Designing intrinsically photostable low band gap polymers: A smart tool combining EPR spectroscopy and DFT calculations. J. Mater. Chem. A 4, 1564715654 (2016).CrossRefGoogle Scholar
Chambon, S., Derue, L., Lahaye, M., Pavageau, B., Hirsch, L., and Wantz, G.: MoO3 thickness, thermal annealing and solvent annealing effects on inverted and direct polymer photovoltaic solar cells. Materials 5, 25212536 (2012).Google Scholar
Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 56485652 (1993).Google Scholar
Lee, C., Yang, W., and Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785789 (1988).CrossRefGoogle ScholarPubMed
Vosko, S.H., Wilk, L., and Nusair, M.: Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 58, 12001211 (1980).Google Scholar
Grimme, S., Ehrlich, S., and Goerigk, L.: Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 14561465 (2011).Google Scholar
Supplementary material: File

Perthué et al. supplementary material

Perthué et al. supplementary material 1

Download Perthué et al. supplementary material(File)
File 5.5 MB