Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-20T04:37:52.876Z Has data issue: false hasContentIssue false

Competition between Exciplex Formation and Photocarrier Generation in Molecular-Scale Donor-Acceptor Heterojunctions

Published online by Cambridge University Press:  30 July 2013

Jun’ya Tsutsumi
Affiliation:
Flexible Electronics Research Center (FLEC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8562, Japan.
Toshikazu Yamada
Affiliation:
Flexible Electronics Research Center (FLEC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8562, Japan.
Hiroyuki Matsui
Affiliation:
Flexible Electronics Research Center (FLEC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8562, Japan.
Tatsuo Hasegawa
Affiliation:
Flexible Electronics Research Center (FLEC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8562, Japan.
Get access

Abstract

Donor-acceptor mixed-stack charge-transfer (CT) compounds can be regarded as a model system for charge carrier separation in molecular-scale donor-acceptor heterojunctions. Here we investigated fundamental photocarrier generation characteristics in single crystals of a donoracceptor mixed-stack system, phenothiazine-tetracyanoquinodimethane (PTZ-TCNQ). The laser beam-induced current (LBIC) measurement on the crystals allowed the discrimination between the exciton and the photocarrier diffusion on the basis of the observed spatial decay profiles. We found that the photocarriers are directly generated by higher-lying CT band excitation and exhibit extremely long diffusion length reaching more than 10 μm. We discuss the origin of the efficient photocarrier generation in terms of the geminate electron-hole pair formation.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hains, A. W., Michael, Z. L., Woodhouse, A., and Gregg, B. A., Chem. Rev. 110, 6689 (2010).CrossRefGoogle Scholar
Hiramoto, M., Fujiwara, H., and Yokoyama, M., Appl. Phys. Lett. 58, 1062 (1991).CrossRefGoogle Scholar
Yu, G., Gao, J., Hummelen, J. C., Wudl, F., and Heeger, A. J., Science 270, 1789 (1995).CrossRefGoogle Scholar
Peumans, P., Uchida, S., and Forrest, S. R., Nature 425, 158 (2003).CrossRefGoogle Scholar
Yang, X., Loos, J., Veenstra, S. C., Verhees, W. J. H., Wienk, M. M., Kroon, J. M., Michels, M. A. J., and Janssen, R. A. J., Nano Letters 5, 579 (2005).CrossRefGoogle Scholar
Shaw, P. E., Ruseckas, A., and Samuel, I. D. W., Adv. Mater. 20, 3516 (2008).CrossRefGoogle Scholar
Deschler, F., Como, E. D., Limmer, T., Tautz, R., Godde, T., Bayer, M., Hauff, E. V., Yilmaz, S., Allard, S., Scherf, U., and Feldmann, J., Phys. Rev. Lett. 107, 127402 (2011).CrossRefGoogle Scholar
Drori, T., Sheng, C.-X., Ndobe, A., Singh, S., Holt, J., and Vardeny, Z. V., Phys. Rev. Lett. 101, 037401 (2008).CrossRefGoogle Scholar
Zhu, L., Yi, Y., Li, Y., Kim, E.-G., Coropceanu, V., and Brédas, J.-L., J. Am. Chem. Soc. 134, 2340 (2012).CrossRefGoogle Scholar
Horiuchi, S., Hasegawa, T., and Tokura, Y., J. Phys. Soc. Jpn. 75, 051016 (2006).CrossRefGoogle Scholar
Hasegawa, T., and Takeya, J., Sci. Technol. Adv. Mater. 10, 024314 (2009).CrossRefGoogle Scholar
Tsutsumi, J., Yamada, T., Matsui, H., Haas, S., and Hasegawa, T., Phys. Rev. Lett. 105, 226601 (2010).CrossRefGoogle Scholar
Peumans, P., Yakimov, A., and Forrest, S. R., J. Appl. Phys. 93, 3693 (2003).CrossRefGoogle Scholar
Kloc, Ch., Simpkins, P. G., Siegrist, T., and Laudise, R. A., J. Cryst. Growth 182, 416 (1997).CrossRefGoogle Scholar
Brédas, J.-L., Norton, J. E., Cornil, J., and Coropceanu, V., Acc. Chem. Res. 42, 1691 (2009).CrossRefGoogle Scholar
Zhu, X.-Y., Yang, Q., and Muntwiler, M., Acc. Chem. Res. 42, 1779 (2009).CrossRefGoogle Scholar
Haga, N., Takayanagi, H., and Tokumaru, K., Photochem. Photobiol. Sci. 2, 1215 (2003).CrossRefGoogle Scholar
Loi, M. A., Toffanin, S., Muccini, M., Forster, M., Scherf, U., and Scharber, M., Adv. Funct. Mater. 17, 2111 (2007).CrossRefGoogle Scholar
Tvingstedt, K., Vandewal, K., Gadisa, A., Zhang, F., Manca, J., and Inganäs, O., J. Am. Chem. Soc. 131, 11819 (2009).CrossRefGoogle Scholar