Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T17:19:43.297Z Has data issue: false hasContentIssue false

Periodic Structures for Improved Light Management in Thin-film Silicon Solar Cells

Published online by Cambridge University Press:  01 February 2011

Janez Krc
Affiliation:
janez.krc@fe.uni-lj.si, University of Ljubljana, Faculty of Electrical Engineering, Electronics, Trzaska 25, Ljubljana, 1000, Slovenia
Andrej Campa
Affiliation:
andrej.campa@fe.uni-lj.si, University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, 1000, Slovenia
Stefan L. Luxembourg
Affiliation:
s.luxembourg@tudelft.nl, Delft University of Technology - DIMES, Delft, 2600 GB, Netherlands
Miro Zeman
Affiliation:
m.zeman@tudelft.nl, Delft University of Technology - DIMES, Delft, 2600 GB, Netherlands
Marko Topic
Affiliation:
marko.topic@fe.uni-lj.si, University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, 1000, Slovenia
Get access

Abstract

Advanced light management in thin-film solar cells is important in order to improve the photo-current and, thus, to raise up the conversion efficiencies of the solar cells. In this article two types of periodic structures ¡V one-dimensional diffraction gratings and photonic crystals,are analyzed in the direction of showing their potential for improved light trapping in thin-film silicon solar cells. The anti-reflective effects and enhanced scattering at the gratings with the triangular and rectangular features are studied by means of two-dimensional optical simulations. Simulations of the complete microcrystalline solar cell incorporating the gratings at all interfaces are presented. Critical optical issues to be overcome for achieving the performances of the cells with the optimized randomly textured interfaces are pointed out. Reflectance measurements for the designed 12 layer photonic crystal stack consisting of amorphous silicon nitride and amorphous silicon layers are presented and compared with the simulations. High reflectance (up to 99 %) of the stack is measured for a broad wavelength spectrum. By means of optical simulations the potential for using a simple photonic crystal structure as a back reflector in an amorphous silicon solar cell is demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Deckman, H.W. Wronski, C.R. Witzke, H. and Yablonovitch, E. Appl. Phys. Lett. 42 (11), (1983) 968.Google Scholar
2 Mueller, J. Rech, B. Springer, J. and Vanecek, M. Solar Energy, 77 (2004) 917.10.1016/j.solener.2004.03.015Google Scholar
3 Fay, S. Dubail, S. Kroll, U. Meier, J. Ziegler, Y. Shah, A. Proc. of the 16th EU PVSEC (2000), p. 361.Google Scholar
4 Kambe, M. Fukawa, M. Taneda, N. Yoshikawa, Y. Sato, K. Ohki, K. Hiza, S. Yamada, A. and Konagai, M. Proc. of WCPEC-3, Osaka, 2003, p.1812.Google Scholar
5 Hegedus, S. S. Kaplan, R. Prog. in Photovolt: Res. Appl. 10 (2002), 257.Google Scholar
6 Banerjee, A. Guha, S. J. Appl. Phys. 69 No. 2 (1991) 1030.Google Scholar
7 Shah, A. et al., J. Non-Cryst. Solids 338-340 (2004) 639.Google Scholar
8 Springer, J. Poruba, A. Muellerova, L. Vanecek, M. Kluth, O. and Rech, B. J. Appl. Phys. 95 No 3 (2004) 1427.Google Scholar
9 Eisele, C. Nebel, C. E. and Stutzmann, M. J. Appl. Phys., 89 No 12 (2001) 7722.Google Scholar
10 Stiebig, H. Senoussaoui, N. Zahren, C. Hasse, C. and Mueller, J. Prog. in Photovolt: Res. Appl. 14 (2006) 13.Google Scholar
11 Terrazzoni-Daudrix, V., Guillet, J. Niquille, X. Feitknecht, L. Freitas, F. Winkler, P. Shah, A., Morf, R. Parriaux, O. and Fischer, D. Proc. of WCPEC-3, Osaka, 2003, p. 1596.Google Scholar
12 Heine, C. and Morf, R. Applied Optics, 34, 1995, p. 2476.Google Scholar
13 Krc, J. Zeman, M. Campa, A. Smole, F. Topic, M. Mater. Res. Soc. Symp. Proc. Vol. 910, 2006, 0910–A25.Google Scholar
14 Beckmann, P. and Spizzichino, A. The scattering of electromagnetic waves from rough surfaces, Pergamon Press, 1963.Google Scholar
15 Campa, A. Krc, J. Smole, F. Topic, M. Thin Solid Films Vol. 516/20 (2008) 6963.Google Scholar
16http://ab-initio.mit.edu/photons/tutorial/Google Scholar
17 Lee, H-Y. and Yao, T. J. Appl. Phys. 93 No. 2 (2003) 812.Google Scholar
18 Lee, H-Y. et al., J. Appl. Phys. 97 (2005) 103111–1.10.1063/1.1903107Google Scholar
19 Zeng, L. Yi, Y. Hong, C. Duan, X. and Kimerling, L. C. Mater. Res. Soc. Symp. Proc. Vol. 862, 2005, A12.3.1.Google Scholar
20 Krc, J. Smole, F. Topic, M. Prog. in Photovolt: Res. Appl. 11 (2003) 15.Google Scholar
21 Brammer, T. Huepkes, J. Krause, M. Kluth, O. Mueller, J. Stiebig, H. and Rech, B. Proc. of WCPEC-3, Osaka, 2003, p. 176.Google Scholar
22 Zeman, M. Swaaij, R.A.C.M.M. van, Metselaar, J.W. and Schropp, R.E.I., J. Appl. Phys. 88 (2000) 6436.Google Scholar
23 Stiebig, H. et al., Proc. of WCPEC-1, Hawaii, 1994, p. 603.Google Scholar