Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T05:28:57.849Z Has data issue: false hasContentIssue false

Physical principles of membrane organization

Published online by Cambridge University Press:  17 March 2009

J. N. Israelachvili
Affiliation:
Department of Applied Mathematics, Research School of Physical Sciences Institute of Advanced Studies, Australian National University, Canberra A.C. T. 2600, Australia
S. Marčelja
Affiliation:
Department of Applied Mathematics, Research School of Physical Sciences Institute of Advanced Studies, Australian National University, Canberra A.C. T. 2600, Australia
R. G. Horn
Affiliation:
Department of Applied Mathematics, Research School of Physical Sciences Institute of Advanced Studies, Australian National University, Canberra A.C. T. 2600, Australia

Extract

Membranes are the most common cellular structures in both plants and animals. They are now recognized as being involved in almost all aspects of cellular activity ranging from motility and food entrapment in simple unicellular organisms, to energy transduction, immunorecognition, nerve conduction and biosynthesis in plants and higher organisms. This functional diversity is reflected in the wide variety of lipids and particularly of proteins that compose different membranes. An understanding of the physical principles that govern the molecular organization of membranes is essential for an understanding of their physiological roles since structure and function are much more interdependent in membranes than in, say, simple chemical reactions in solution. We must recognize, however, that the word ‘understanding’ means different things in different disciplines, and nowhere is this more apparent than in this multidisciplinary area where biology, chemistry and physics meet.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahkong, Q. F., Fisher, D., Tampion, W. & Lucy, J. A. (1975). Mechanism of cell fusion, Nature Lond. 253, 194195.Google Scholar
Alexander, A. E. & Johnson, P. (1950). Colloid Science. Oxford: Clarendon Press.Google Scholar
Amos, L. A. (1979). Structure of microtubules. In Microtubules, ch. I (ed. Roberts, K. and Hyams, J. S.). New York: Academic Press.Google Scholar
Anderson, R. G. W. & Hein, C. E. (1977). Distribution of anionic sites on the oviduct ciliary membrane. J. Cell. Biol. 72, 482492.Google Scholar
Andersson, B. & Anderson, J. M. (1980). Lateral heterogeneity of chlorophyll-protein complexes along the thylakoid membrane of spinach chloroplasts. Biochim. biophys. Acta (in the press).Google Scholar
Aniansson, E. A. G., Wall, S. N., Almgren, M., Hoffmann, H., Kielmann, I., Ulbricht, W., Zana, R., Lang, J. & Tondre, C. (1976).Theory of the kinetics of micellar equilibria. J. Phys. Chem. 80, 905922.Google Scholar
Armond, P. A. & Staehelin, L. A. (1979). Lateral and vertical displacement of integral membrane proteins during lipid phase transition in Anacystis nidulans. Proc. natn. Acad. Sci. U.S.A. 76, 19011905.Google Scholar
Ashcroft, R. G. & Coster, H. G. L. (1978). The hydration number of protons in membranes: thermodynamic implications for ATP synthesis. Bioelectrochem. & Bioenergetics 5, 3742.Google Scholar
Bangham, A. D., Morley, C. J. & Phillips, M. C. (1979). The physical properties of an effective lung surfactant. Biochim. biophys. Acta 573, 552556.Google Scholar
Berlin, R. D., Caron, J. M. & Oliver, J. M. (1979). Microtubules and the structure and function of cell surfaces. In Microtubules, ch. 10 (ed. Roberts, K. and Hyams, J. S.). New York: Academic Press.Google Scholar
Birrell, G. B. & Griffith, O. H. (1976). Cytochrome c induced lateral phase separation in a diphosphatidylglycerol-steroid spin-label model membrane. Biochemistry, N. Y. 15, 29252929.Google Scholar
Blaurock, A. E. & Gamble, R. C. (1979). Small lecithin vesicles appear to be faceted below the thermal phase transition. J. Membrane Biol. 50, 187204.Google Scholar
Boggs, J. M., Clement, I. R. & Moscarello, M. A. (1980) Similar effect of proteolipid apoproteins from human myelin (lipophilin) and bovine white matter on the lipid phase transition. Biochim. biophys. Acta 601, 134151.Google Scholar
Boggs, J. M. & Moscarello, M. A. (1978 a). Structural organization of the human myelin membrane. Biochim. biophys. Acta 515, 121.Google Scholar
Boggs, J. M. & Moscarello, M. A. (1978 b). Dependence of boundary lipid on fatty acid chain length in phosphatidylcholine vesicles containing a hydrophobic protein from myelin proteolipid. Biochemistry N.Y. 17, 57345739.Google Scholar
Boggs, J. M., Wood, D. D., Moscarello, M. A. & Papahadjopoulos, D. (1977). Lipid phase separation induced by a hydrophobic protein in phosphatidylserine-phosphatidylcholine vesicles. Biochemistry, N.Y. 16, 23252329.Google Scholar
Borochov, H. & Shinitzky, M. (1976). Vertical displacement of membrane proteins mediated by changes in microviscosity. Proc. natn. Acad. Sci. U.S.A. 73, 45264530.Google Scholar
Bos, P. J. & Doane, J. W. (1978). Molecular order versus conformational changes in the liquid-crystal phases. Phys. Rev. Lett. 40, 10301034.Google Scholar
Bretscher, M. S. (1973). Membrane structure: some general principles. Science, N.Y. 181, 622629.Google Scholar
Bretscher, M. S. (1976). Directed lipid flow in cell membranes. Nature, Lond. 260, 2123.Google Scholar
Bretscher, M. S. & Raff, M. C. (1975). Mammalian plasma membranes, Nature, Lond. 258, 4349.Google Scholar
Brotherus, J. R., Jost, P. C., Griffith, O. H., Keana, J. F. W. & Hokin, L. E. (1980). Charge selectivity at the lipid-protein interface of membranous Na, K-ATPase. Proc. natn. Acad. Sci. U.S.A. 77, 272276.Google Scholar
Browning, J. L. & Seelig, J. (1980). Bilayers of phosphatidylserine: a deuterium and phosphorous nuclear magnetic resonance study. Biochemistry 19, 12621270.Google Scholar
Brunner, J., Skrabal, P. & Hauser, H. (1976). Single bilayer vesicles prepared without sonication: physico-chemical properties. Biochim. biophys. Acta 455, 322331.Google Scholar
Büldt, G., Gally, H. U., Seelig, A., Seelig, J. & Zaccai, G. (1978). Neutron diffraction studies on selectively deuterated phospholipid bilayers. Nature, Lond. 271, 182184.Google Scholar
Buxbaum, K. L. (1980). Measurement of the intrinsic affinity of red cell membranes for other membrane surfaces. PhD dissertation, Duke University.Google Scholar
Capaldi, R. A. (1974). A dynamic model of cell membranes. Scient. Am. 230 (3) 03, 2633.Google Scholar
Carnie, S., Israelachvili, J. N. & Pailthorpe, B. A. (1979). Lipid packing and transbilayer asymmetries of mixed lipid vesicles. Biochim. biophys. Acta 554, 340357.Google Scholar
Chapman, D., GóMez-fernández, J. C. & Goni, F. M. (1979). Intrinsic protein-lipid interactions. FEBS Lett. 98, 211223.Google Scholar
Charvolin, J., Manneville, P. & Deloche, B. (1973). Magnetic resonance of perdeuterated potassium laurate in oriented soap-water multilayers. Chem. Phys. Lett. 23, 345348.Google Scholar
Chen, Y. S. & Hubbell, W. L. (1973). Temperature and light dependent structural changes in rhodopsin-lipid membranes. Expl Eye Res. 17, 517532.Google Scholar
Cowley, A. C., Fuller, N. L., Rand, R. P. & Parsegian, V. A. (1978). Measurement of repulsive forces between charged phospholipid bilayers. Biochemistry, N.Y. 17, 31633168.Google Scholar
Cullis, P. R. & De Kruijff, B. (1978). Polymorphic phase behaviour of lipid mixtures as detected by 31P NMR. Evidence that cholesterol may destabilise bilayer structure in membrane systems containing phosphatidylethanolamine. Biochim. biophys. Acta 507, 207218.Google Scholar
Cullis, P. R. & De Kruijff, B. (1979). Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim. biophys. Acta 559, 399420.Google Scholar
Cullis, P. R. & Hope, M. J. (1980). The bilayer stabilizing role of sphingomyelin in the presence of cholesterol. Biochim. biophys. Acta 597, 533542.Google Scholar
Curatolo, W., Sakura, J. D., Small, D. M. & Shipley, G. G. (1977). Protein-lipid interactions: recombinants of the proteolipid apoprotein of myelin with dimyristoyllecithin. Biochemistry, N.Y. 16, 23132319.Google Scholar
Curatolo, W., Verma, S. P., Sakura, J. D., Small, D. M., Shipley, G. G. & Wallach, D. F. H. (1978). Structural effects of myelin proteolipid apoprotein on phospholipids: a Raman spectroscopic study. Biochemistry, N.Y. 17, 18021807.Google Scholar
Danielli, J. F. & Davson, H. A. (1935). A contribution to the theory of permeability of thin films. J. cell comp. Physiol. 5, 495508.Google Scholar
Davson, H. & Danielli, J. F. (1952). The Permeability of Natural Membranes, 2nd ed.London: Cambridge University Press.Google Scholar
De Kruijff, B. & Baken, P. (1978). Rapid transbilayer movement of phospholipids induced by an asymmetrical perturbation of the bilayer. Biochim. biophys. Acta 507, 3847.Google Scholar
Deuling, H. J. & Helfrich, W. (1976). Red blood cell shapes as explained on the basis of curvature elasticity. Biophys. J. 16, 861868.Google Scholar
Dickerson, R. E., Takano, T., Eisenberg, D., Kallai, O. B., Samson, L., Cooper, A. & Margoliash, E. (1971). Ferricytochrome c. J. biol. Chem. 246, 15111535.Google Scholar
Doniach, S. (1979). A thermodynamic model for the monoclinic (ripple) phase of hydrated phospholipid bilayers. J. Chem. Phys. 70, 45874596.Google Scholar
Duckwitz-Peterlein, G., Eilenberger, G. & Overath, P. (1977). Phospholipid exchange between bilayer membranes. Biochim. biophys. Acta 469, 311325.Google Scholar
Eisenberg, M., Gresalfi, T., Riccio, T. & McLaughlin, S. (1979). Adsorption of monovalent cations to bilayer membranes containing negative phospholipids. Biochemistry, N.Y. 18, 52135223.Google Scholar
Engelman, D. M. & Rothamn, J. E. (1972). The planar organization of lecithin-cholesterol bilayers. J. biol. Chem. 247, 36943697.Google Scholar
Evans, E. A. & Hochmuth, R. M. (1978).Mechano-chemical properties of membranes. In Current topics in membranes and transport, vol. X (ed. Kleinzeller, A. & Bronner, F.), pp. 164. New York: Academic Press.Google Scholar
Evans, E. A. & Skalak, R. (1979). Mechanics and Thermodynamics of Biomembranes. CRC Critical Revs. Bioeng. 3, 181330; 331418.Google Scholar
Favre, E., Baroin, A., Bienvenue, A. & Devaux, P. F. (1979). Spin-label studies of lipid–protein interactions in retinal rod outer segment membranes. Fluidity of the boundary layer. Biochemistry, N.Y. 18, 11561162.Google Scholar
Finer, E. G. & Darke, A. (1974). Phospholipid hydration studied by deuteron magnetic resonance spectroscopy. Chem. Phys. Lipids 12, 116.Google Scholar
Finkelstein, A. (1976). Water and nonelectrolyte permeability of lipid bilayer membranes. J. gen. Physiol. 68, 127135.Google Scholar
Fisher, L. R. & Oakenfull, D. G. (1977). Micelles in aqueous solution. Chem. Soc. Revs. 6, 2542.Google Scholar
Forsyth, P. A., MarčElja, S., Mitchell, D. J. & Ninham, B. W. (1977). Phase transition in charged lipid membranes. Biochim. biophys. Acta 469, 335344.Google Scholar
Franke, W. W., Grund, C., Schmid, E. & Mandelkow, E. (1978). Paracrystalline arrays of membrane-to-membrane cross bridges associated with the inner surface of plasma membrane. J. Cell Biol. 77, 323328.Google Scholar
Gorter, E. & Grendel, F. (1925). On bimolecular layers of lipoids on the chromocytes of the blood. J. exp. Med. 41, 439443.Google Scholar
Green, D. E., Fry, M. & Blondin, G. A. (1980). Phospholipids as the molecular instruments of ion and solute transport in biological membranes. Proc. natn. Acad. Sci. U.S.A. 77, 257261.Google Scholar
Green, D. E. & Perdue, J. F. (1966). Membranes as expressions of repeating units. Proc. natn. Acad. Sci. U.S.A. 55, 12951302.Google Scholar
Griffith, O. H., Dehlinger, P. J. & Van, S. P. (1974). Shape of the hydrophobic barrier of phospholipid bilayers: evidence for water penetration in biological membranes. J. Membrane Biol. 15, 159192.Google Scholar
Grinnel, F., Tobleman, M. Q. & Hackenbrock, C. R. (1975). The distribution and mobility of anionic sites on the surfaces of baby hamster kidney cells. J. Cell Biol. 66, 470479.Google Scholar
Gruen, D. (1980). A statistical mechanical model of the lipid bilayer above its phase transition. Biochim. biophys. Acta 595 161183.Google Scholar
Hackenbrock, C. R. & Miller, K. J. (1975). The distribution of anionic sites on the surfaces of mitochondrial membranes. J. Cell Biol. 6, 615630.Google Scholar
Hall, D. G. & Pethica, B. A. (1967). Thermodynamics of micelle formation. In Nonionic Surfactants, ch. 16 (ed. Schick, M. J.). New York: Marcel Dekker.Google Scholar
Haran, N. & Shporer, M. (1977). Proton magnetic resonance study of cholesterol transfer between egg yolk lecithin vesicles. Biochim. biophys. Acta 465, 1118.Google Scholar
Harlos, K. (1978). Pretransitions in the hydrocarbon chains of phosphatidylethanolamines. A wide angle X-ray diffraction study. Biochim. biophys. Acta 511, 348355.Google Scholar
Hartmann, W., Galla, H.-J. & Sackmann, E. (1977). Direct evidence of charge-induced lipid domain structure in model membranes. FEBS Lett. 78, 169172.Google Scholar
Hauser, H., Pascher, I. & Sundell, S. (1980 a). Conformation of phospholipids. Crystal structure of a lysophosphatidyicholine analogue. J. molec. Biol. 137, 249264.Google Scholar
Hauser, H., Guyer, W., Pascher, I., Skrabal, P. & Sundell, S. (1980 b). Polar group conformation of phosphatidylcholine. Effect of solvent and aggregation. Biochemistry, N.Y. 19, 366373.Google Scholar
Hauser, H., Oldani, D. & Phillips, M. C. (1973). Mechanism of ion escape from phosphatidylcholine and phosphatidylserine single bilayer vesicles. Biochemistry, N.Y. 12, 45074517.Google Scholar
Helfrich, W. (1973). Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturf. 28c, 693703.Google Scholar
Helfrich, W. (1974). Blocked lipid exchange in bilayers and its possible influence on the shape of vesicles. Z. Naturf. 29c, 510515.Google Scholar
Henderson, R. (1977). The purple membrane from Halobacterium Halobium A. Rev. Biophys. Bioeng. 6, 87109.Google Scholar
Henderson, R., Capaldi, R. A. & Leigh, J. S. (1977). Arrangement of cytochrome oxidase molecules in two-dimensional vesicle crystals. J. molec. Biol. 112, 631648.Google Scholar
Hermann, R. B. (1975). Theory of hydrophobic bonding. J. Phys. Chem. 79, 163169.Google Scholar
Hesketh, T. R., Smith, G. A., Houslay, M. D., Mcgill, K. A., Birdsall, N. J. M., Metcalfe, J. C. & Warren, G. B. (1976). Annular lipids determine the ATPase activity of a calcium transport protein complexed with dipalmitoyllecithin. Biochemistry, N.Y. 15 41454151.Google Scholar
Hill, T. L. (1963, 1964). Thermodynamics of small systems, vol. I, 2. Benjamin, W. A., New York.Google Scholar
Hitchcock, P. B., Mason, R., Thomas, K. M. & Shipley, G. G. (1974). Structural chemistry of 1,2 Dilauroyl-DL-phosphatidylethanolamine: molecular conformation and intermolecular packing of phospholipids. Proc. natn. Acad. Sci. U.S.A. 71, 30363040.Google Scholar
Höchli, M. & Hackenbrock, C. R. (1979). Lateral translational diffusion of cytochrome c oxidase in the mitochondrial energy-transducing membrane. Proc. natn. Acad. Sci. U.S.A. 76, 12361240.Google Scholar
Hoi, Sang U., Saier, M. H. & Ellisman, M. H. (1979). Tight junction formation is closely linked to the polar redistribution of intramembraneous particles in aggregating MDCK epithelia. Expl Cell Res. 122, 384390.Google Scholar
Hui, S. W., Cowden, M., Papahadjopoulos, D. & Parsons, D. F. (1975). Electron diffraction study of hydrated phospholipid single bilayers Biochim. biophys. Acta 382, 265275.Google Scholar
Hui, S. W. & Parsons, D. F. (1975). Direct observation of domains in wet lipid bilayers. Science, N.Y. 190, 383384.Google Scholar
Israelachvili, J. N. (1973). Theoretical considerations on the asymmetric distribution of charged phospholipid molecules on the inner and outer layers of curved bilayer membranes. Biochim. biophys. Acta 323, 659663.Google Scholar
Israelachvili, J. N. (1977). Refinement of the fluid-mosaic model of membrane structure. Biochim. biophys. Acta 469, 221225.Google Scholar
Israelachvili, J. N. (1978). The packing of lipids and proteins in membranes. In Light Transducing Membranes: Structure, Function and Evolution (ed. Deamer, D. W.), pp. 91107. New York: Academic Press.Google Scholar
Israelachvili, J. N. & Mitchell, D. J. (1975). A model for the packing of lipids in bilayer membranes. Biochim. biophys. Acta 389, 1319.Google Scholar
Israelachvili, J. N., Mitchell, D. J. & Ninham, B. W. (1976). Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc. Faraday Trans II 72, 15251568.Google Scholar
Israelachvili, J. N., Mitchell, D. J. & Ninham, B. W. (1977). Theory of self- assembly of lipid bilayers and vesicles. Biochim. biophys. Acta 470, 185201.Google Scholar
Israelachvili, J. N. & Ninham, B. W. (1977). Intermolecular forces – the long and short of it. J. Colloid Interface Sci. 58, 1425.Google Scholar
Jacobs, R. E., Hudson, B. & Andersen, H. C. (1975). A theory of the chain melting phase transition of aqueous phospholipid dispersions. Proc. natn. Acad. Sci, U.S.A. 72, 39933997.Google Scholar
Jacobson, K. & Papahadjopoulos, D. (1975). Phase transition and phase separation in phospholipid membranes induced by changes in temperature, pH, and concentration of bivalent cations. Biochemistry, N.Y. 14, 152161.Google Scholar
Jähnig, F. (1979). Structural order of lipids and protiens in membranes: evaluation of fluorescence anisotropy data. Proc. natn. Acad. Sci. U.S.A. 76, 63616365.Google Scholar
Jähnig, F., Harlos, K., Vogel, H. & Ejbl, H. (1979). Electrostatic interactions at charged lipid membranes. Electrostatically induced tilt. Biochemistry, N.Y. 18, 14591468.Google Scholar
Janiak, M. J., Small, D. M. & Shipley, G. G. (1976). Nature of the thermal pretransition of synthetic phospholipids: Dimyristoyl- and Dipalmitoyllecithin. Biochemistry, N. Y. 15, 45754580.Google Scholar
Jost, P. C., Griffith, O. H., Capaldi, R. A. & Vanderkooi, G. (1973). Evidence for boundary lipid in membranes. Proc. natn. Acad. Sci. U.S.A. 70, 480484.Google Scholar
Jost, P. C. & Griffith, O. H. (1980). The lipid-protein interface in biological membranes. Ann. N.Y. Acad. Sci. 391405.Google Scholar
Kader, J. C. (1977). Exchange of phospholipids between membranes. In Cell Surface Reviews (ed. Poste, G. & Nicolson, G. L.), vol. 3, pp. 127204Amsterdam: North Holland.Google Scholar
Kang, S. Y., Gutowsky, H. S., Hsung, J. C., Jacobs, R., King, T. E., Rice, D. & Oldfield, E. (1979). Nuclear magnetic resonance investigation of the cytochrome oxidase – phospholipid interaction: a new model for boundary lipid. Biochemistry, N. Y. 18, 32573267.Google Scholar
Kimelberg, H. K. (1976). Protein-liposome interactions and their relevance to the structure and function of cell membranes. Mol. & Cell. Biochem. 10, 171190.Google Scholar
Kimelberg, H. K. & Papahadjopoulos, D. (1971). Phospholipid-protein interactions: membrane permeability correlated with monolayer ‘penetration’. Biochim. biophys. Acta 233, 805809.Google Scholar
Kitagawa, T., Inoue, K. & Nojima, S. (1976). Properties of liposomal membranes containing lysolecithin. J. Biochem. 79, 11231133.Google Scholar
Kleeman, W. & McConnell, H. M. (1976). Interactions of proteins and cholesterol with lipids in bilayer membranes. Biochim. biophys. Acta 419, 206222.Google Scholar
Kremer, J. M. H., Esker, M. W. J., Pathmamanoharan, C. & Wiersema, P. H. (1977). Vesicles of variable diameter prepared by a modified injection method. Biochemistry, N.Y. 16, 39323935.Google Scholar
Kwok, R., Evans, E. A. & Hochmuth, R. M. (1980). Elastic area compressibility modulus and thermal area expansivity of large phospholipid bilayer vesicles. Am. Soc. Biol. Chem. meeting, 1980.Google Scholar
Ladbrooke, B. D. & Chapman, D. (1969). Thermal analysis of lipids, proteins and biological membranes. A review and summary of some recent studies. Chem. Phys. Lipids 3, 304367.Google Scholar
Lee, A. G.Functional properties of biological membranes: a physical-chemical approach. Prog. Biophys. & Molec. Biol. 29, 356.Google Scholar
Lee, A. O. (1977). Lipid phase transitions and phase diagrams. II. Mixtures involving lipids. Biochim. biophys. Acta 472, 285344.Google Scholar
Lee, Y. & Chan, S. I. (1977). Effect of lysolecithin on the structure and permeability of lecithin bilayer vesicles. Biochemistry, N. Y. 16, 13031309Google Scholar
Le, Neveu D. M., Rand, R. P. & Parsegian, V. A. (1976). Measurement of forces between lecithin bilayers. Nature, Lond. 259, 601603.Google Scholar
Le, Neveu D. M., Rand, R. P., Parsegian, V. A. & Gingell, D. (1977). Measurement and modification of forces between lecithin bilayers. Biophys. J. 18, 209230.Google Scholar
Letellier, L., Moudden, H. & Schechter, E. (1977). Lipid and protein segregation in Escherichia coli membrane. Proc. natn. Acad. Sci. U.S.A. 74, 452456.Google Scholar
Liebman, P. A. & Pugh, E. N. (1979). The control of phosphodiesterase in rod disk membranes: kinetics, possible mechanisms and significance for vision. Vision Res. 19, 375380.Google Scholar
Linden, C. D., Wright, K. L., McConnell, H. M. & Fox, C. F. (1973). Lateral phase separation in membrane lipids and the mechanism of sugar transport in Escherichia coli. Proc. natn. Acad. Sci. U.S.A. 70, 22712275.Google Scholar
Lodish, H. F. & Rothman, J. E. (1979). The assembly of cell membranes. Scient. Am. 240 (I), 01, 3853.Google Scholar
Luna, E. J. & McConnell, H. M. (1978). Multiple phase equilibria in binary mixtures of phospholipids. Biochim. biophys. Acta 509, 462473.Google Scholar
Luzzati, V. & Tardieu, A. (1974). Lipid phases: structure and structural transitions. A. Rev. phys. Chem. 25, 7994.Google Scholar
Mabrey, S. & Sturtevant, J. M. (1976). Investigation of phase transitions of lipids and lipid mixtures by high sensitivity differential scanning calorimetry. Proc. natn. Acad. Sci. U.S.A. 73, 38623866.Google Scholar
MacDonald, R. C. (1976). Energetics of permeation of thin lipid membranes by ions. Biochim. biophys. Acta 448, 193198.Google Scholar
MacDonald, R. C., Simon, S. A. & Baer, E. (1976). Ionic influences on the phase transition of dipalmitoylphosphatidylserine. Biochemistry, N.Y. 15, 885891.Google Scholar
McIntosh, T. J. (1980). Difference in hydrocarbon chain tilt between hydrated phosphatidylethanolamine and phosphatidylcholine bilayers. Biophys. J. 29, 237246.Google Scholar
McLaughlin, S. & Harari, H. (1974). Phospholipid flip-flop and the distribution of surface charges in excitable membranes. Biophys. J. 14, 200208.Google Scholar
Marčelja, S. (1974 a). Chain ordering in liquid crystals. I. Even-odd effect. J. chem. Phys. 60, 35993604.Google Scholar
Marčelja, S. (1974 b). Chain ordering in liquid crystals. II. Structure of bilayer membranes. Biochim. biophys. Acta 367, 165176.Google Scholar
Marčelja, S. (1976). Lipid-mediated protein interaction in membranes. Biochim. biophys. Acta 455, 17.Google Scholar
Marčelja, S. & Radić, N. (1976). Repulsion of interfaces due to boundary water. Chem. Phys. Lett. 42, 129130.Google Scholar
Mitchell, D. J. & Ninham, B. W. (1980). Micelles, vesicles and microemulsions. J. Chem. Soc. Faraday Trans. II (in the press).Google Scholar
Nagle, J. F. (1973). Theory of biomembrane phase transitions. J. chem. Phys. 58, 252264.Google Scholar
Nagle, J. F. (1975). Critical points for dimer models with 3/2-order transitions. Phys. Rev. Lett. 34, 11501153.Google Scholar
Nagle, J. F. (1980). Theory of lipid bilayer phase transitions. A. Rev. phys. Chem. (in the press, 1980).Google Scholar
Nakai, I. & Kawasaki, Y. (1959). Studies of the mechanism determining the course of nerve fibres in tissue culture. I. The reaction of the growth cone to various obstructions. Z. Zellforsch. 51, 108122.Google Scholar
Nicolson, G. L. (1976). Transmembrane control of the receptors on normal and tumour cells. I. Cytoplasmic influence over cell surface components. Biochim. biophys. Acta 457, 57108.Google Scholar
Nicolson, G. L., Poste, G. & JI, T. H, (1977). The dynamics of cell membrane organization. In Cell Surface Reviews (ed. Poste, G. and Nicholson, G. L.), vol. 3, pp. 173. Amsterdam: North-Holland.Google Scholar
Ninham, B. W. (1980). Long-range vs. short-range forces. The present state of play. J. Phys. Chem. 84, 14231430.Google Scholar
Ohnishi, S. & Ito, T. (1973). Clustering of lecithin molecules in phosphatidylserine membranes induced by calcium ion binding to phosphatidylserine. Biochem. biophys. Res. Commun. 51, 132138.Google Scholar
Oldani, D., Hauser, H., Nichols, B. W. & Phillips, M. C. (1975). Monolayer characteristics of some glycolipids at the air-water interface. Biochim. biophys. Acta 382, 19.Google Scholar
Papahadjopoulos, D. (1973). Phospholipids as model membranes: mono-layers bilayers and vesicles. In Form and Function of Phospholipids (ed. Ansell, G. B., Hawthorne, J. N. and Dawson, R. M. C.). BBA Library, vol. 3, ch. 7. Amsterdam: Elsevier.Google Scholar
Papatiadjopoulos, D. (1977). Effects of bivalent cations and proteins on thermotropic properties of phospholipid membranes. J. Colloid & Interface Sci. 8, 459470.Google Scholar
Papahadjopoulos, D. & Miller, N. (1967). Phospholipid model membranes Biochim. biophys. Acta 135, 624638.Google Scholar
Papahadjopoulos, D., Hui, S., Vail, W. J. & Poste, G. (1976). Studies on membrane fusion. Biochim. biophys. Acta 448, 245264.Google Scholar
Papahadjopoulos, D., Vail, W. J., Jacobson, K. & Poste, G. (1975). Cochleate lipid cylinders: formation by fusion of unilamellar lipid vesicles. Biochim. Biophys. Acta 394, 483491.Google Scholar
Parsegian, V. A., Fuller, N. & Rand, R. P. (1979). Measured work of deformation and repulsion of lecithin bilayers. Proc. natn. Acad. Sci. U.S.A. 76, 27502754.Google Scholar
Parsegian, V. A. & Gingell, D. (1972). Some features of physical forces between biological cell membranes. J. Adhes. 4, 283306.Google Scholar
Pearson, R. H. & Pascher, I. (1979). The molecular structure of lecithin dihydrate. Nature, Lond. 281, 499501.Google Scholar
Peracchia, C. (1978). Calcium effects on gap junction structure and cell coupling. Nature, Lond. 271, 669671.Google Scholar
Petrov, A. G., Seleznev, S. A. & Derzhanski, A. (1978). Principles and methods of liquid crystal physics applied to the structure and functions of biological membranes. Acta Physica Polonica A55, 385405.Google Scholar
Poste, G. & Nicolson, G. L. (1977). Dynamic aspects of cell surface organization. Cell Surface Reviews, vol. 3. Amsterdam: North-Holland.Google Scholar
Pullman, B. & Berthod, H. (1974). Quantum mechanical studies on the conformation of phospholipids. The conformational properties of the polar head. FEBS Lett. 44, 266269.Google Scholar
Pullman, B., Berthod, H. & Gresh, N. (1975). Quantum mechanical studies on the conformation of phospholipids. The effect of water on the conformational properties of the polar head. FEBS Lett. 53, 199204.Google Scholar
Quinn, P. J. & Williams, W. P. (1978). Plant lipids and their role in membrane function. Prog. Biophys. & molec. Biol. 34, 109173.Google Scholar
Ralston, E., Blumenthal, R., Weinstein, J. N., Sharrow, S. O. & Henkart, P. (1980). Lysophosphatidylcholine in liposomal membranes. Enhanced permeability but little effect on transfer of water-soluble fluorescent marker into human lymphocytes. Biochim. biophys. Acta 597, 543551.Google Scholar
Rand, R. P., Fuller, N. L. & Lis, L. J. (1979). Myelin swelling and measurement of forces between myelin membranes. Nature, Lond. 279, 258260.Google Scholar
Rand, R. P., Tinker, D. O. & Fast, P. G. (1971). Polymorphism of phosphatidylethanolamines from two natural sources. Chem. Phys. Lipids 6, 333342.Google Scholar
Rice, D. M., Meadows, M. D., Scheinman, A. O., Goñi, F. M., Gómez-Fernández, J. C., Moscarello, M. A., Chapman, D. & Oldfield, E. (1979). Protein-lipid interactions. A NMR study of sacroplasmic reticulum Ca2+, Mg2+-ATPase, lipophilin, and proteolipid apoproteinlecithin systems and a comparison with the effects of cholesterol. Biochemistry, N.Y. 18, 58935903.Google Scholar
Rice, D. & Oldfield, E. (1979). Deuterium nuclear magnetic resonance studies of the interaction between dimyristoylphosphatidylcholine and gramicidin A. Biochemistry, N. Y. 18, 32723279.Google Scholar
Roberts, K. & Hyams, J. S. (1979). Microtubules. New York: Academic Press.Google Scholar
Robertson, J. D. (1964). In Cellular Membranes in Development (ed. Locke, M.), pp. 181. New York: Academic Press.Google Scholar
Roseman, M. A. & Thomson, T. E. (1980). Mechanism of the spontaneous transfer of phospholipids between bilayers. Biochemistry, N.Y. 19, 439444.Google Scholar
Rothman, J. E. & Lenard, J. (1977). Membrane asymmetry. Science, N.Y. 195, 743753.Google Scholar
Ruysschaert, J. M., Tenenbaum, A., Berliner, C. & Delmelle, M. (1977). Correlation between lateral lipid phase separation and immunological recognition in sensitized liposomes. FEBS Lett. 81, 406410.Google Scholar
Sandermann, H. (1978). Regulation of membrane enzymes by lipids. Biochim. biophys. Acta 515, 209237.Google Scholar
Schatzberg, P. (1963). Solubilities of water in several normal alkanes from C7 to C16. J. Phys. Chem. 67, 776779.Google Scholar
Schindler, H. & Seelig, J. (1975). Deuterium order parameters in relation to thermodynamic properties of a phospholipid bilayer. A statistical mechanical interpretation. Biochemistry, N. Y. 14, 22832287.Google Scholar
Schneider, H., Lemasters, J. J., Höchli, M. & Hackenbrock, C. (1980). Fusion of liposomes with mitochondrial inner membranes. Proc. natn. Acad. Sci. U.S.A. 77, 442446.Google Scholar
Schreier, S., Polnaszek, C. F. & Smith, I. C. P. (1978). Spin labels in membranes: problems in practice. Biochim. biophys. Acta 515, 375436.Google Scholar
Seelig, J. & Browning, J. L. (1978). General features of phospholipid conformation in membranes. FEBS Lett. 92, 4144.Google Scholar
Seelig, J. & Niederberger, W. (1974). Two pictures of a lipid bilayer. A comparison between deuterium label and spin-label experiments. Biochemistry, N.Y. 13, 15851588.Google Scholar
Seelig, J. & Seelig, A. (1974). The dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. Biochemistry, N.Y. 13, 48394845.Google Scholar
Seelig, A. & Seelig, J. (1978). Lipid-protein interaction in reconstituted cytochrome c oxidase/phospholipid membranes. Hoppe-Seyler's Z. Physiol. Chem. 359, 17471756.Google Scholar
Seelig, J., Gally, H. U. & Wohlgemuth, R. (1977). Orientation and flexibility of the choline head group in phosphatidylcholine bilayers. Biochim. biophys. Acta 467, 109119.Google Scholar
Sheetz, M. P. & Singer, S. J. (1974) Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc. natn. Acad. Sci. U.S.A. 71, 44574461.Google Scholar
Shimoyama, Y., Eriksson, L. E. G. & Ehrenberg, A. (1978). Molecular motion and order in oriented lipid multibilayer membranes evaluated by simulations of spin label ESR spectra. Biochim. biophys. Acta 508, 213235.Google Scholar
Shimshick, E. J. & McConnell, H. M. (1973). Lateral phase separation in phospholipid membranes. Biochemistry, N.Y. 12, 23512360.Google Scholar
Shinitzky, M. & Henkart, P. (1979). Fluidity of cell membranes – current concepts and trends. Int. Rev. Cytol. 60, 121147.Google Scholar
Shukla, S. D., Berriman, J., Coleman, R., Finean, J. B. & Mitchell, R. H. (1978). Membrane protein segregation during release of microvesicles from human erythrocytes. FEBS Lett. 90, 289292.Google Scholar
Silvius, J. R. & McElhaney, R. N. (1980). Membrane lipid physical state and modulation of the Na+, Mg2+-ATPase activity in Acholeplasma laidlawii B. Proc. natn. Acad. Sci. U.S.A. 77, 12551259.Google Scholar
Singer, S. J. (1971). The molecular organization of biological membranes. In Structure and function of biological membranes (ed. Rothfleld, L. I.), pp. 145222. New York: Academic Press.Google Scholar
Singer, S. J. (1977). The proteins of membranes J. Colloid & Interface Sci. 58, 452458.Google Scholar
Singer, S. J. & Nicolson, G. L. (1972). The fluid mosaic model of the structure of cell membranes. Science, N.Y. 175, 720731.Google Scholar
Sjöstrand, F. S. & Barajas, L. (1970). A new model for mitochondrial membranes based on structural and on biochemical information. J. Ultrastruct. Res. 32, 293306.Google Scholar
Staehelin, L. A. & Arntzen, C. J. (1979). Effects of ions and gravity forces on the supramolecular organization and excitation energy distribution in chloroplast membranes. In Chlorophyll organization and energy transfer in photosynthesis. Ciba Foundation Symposium 61, 147175.Google Scholar
Stier, A. & Sackmann, E. (1973). Spin labels as enzyme substrates: Heterogeneous lipid distribution in liver microsomal membranes. Biochim. biophys. Acta 311, 400408.Google Scholar
Stockton, G. W., Polnaszek, C. F., Tulloch, A. P., Hasan, F. & Smith, I. C. P. (1976). Molecular motion and order in single-bilayer vesicles and multilamellar dispersions of egg lecithin and lecithin-cholesterol mixtures. A deuterium magnetic resonance study of specifically labeled lipids.Biochemistry, N.Y. 15, 954966.Google Scholar
Stockton, G., Johnson, K. G., Butler, K. W., Tulloch, A. P., Boulanger, Y., Smith, I. C. P., Davis, J. H. & Bloom, M. (1977). Deuterium NMR study of lipid organization in Acholeplasma laidlawii membranes. Nature, Lond. 269, 267268.Google Scholar
Sundaralingam, M. (1972). Molecular structures and conformations of the phospholipids and sphingomyelins. Ann. N.Y. Acad. Sci. 195, 324355.Google Scholar
Tanford, C. (1972). Micelle shape and size. J. Phys. Chem. 76, 30203024.Google Scholar
Tanford, C. (1973). The Hydrophobic Effect: formation of micelles and biological membranes. New York: John Wiley.Google Scholar
Tardjeu, A., Luzzati, V. & Reman, F. C. (1973). Structure and polymorphism of the hydrocarbon chains of lipids: A study of lecithin-water phases. J. molec. Biol. 75, 711733.Google Scholar
Taylor, J. A. G., Mingins, J. & Pethica, B. A. (1976). Phospholipid monolayers at the n-heptane/water interface. J. Chem. Soc. Faraday Trans. I, 72, 26942702.Google Scholar
Taylor, J. A. G., Mingins, J., Pethica, B. A., Tan, B. Y. J. & Jackson, C. M. (1973). Phase changes and mosaic formation in single and mixed phospholipid monolayers at the oil-water interface. Biochim. biophys. Acta 323, 157160.Google Scholar
Thilo, L. (1977). Kinetics of phospholipid exchange between bilayer membranes. Biochim. biophys. Acta 469, 326334.Google Scholar
Timasheff, S. N. (1979). The in vitro assembly of microtubules from purified brain tubulin. TIBS, 03, 6165.Google Scholar
Träuble, H., Teubner, M., Wooley, P. & Eibl, H. (1976). Electrostatic interactions at charged lipid membranes. I. Effects of pH and univalent cations on membrane structure. Biophys. Chem. 4, 319342.Google Scholar
Tsong, T. Y. & Yang, C. S. (1978). Rapid conformational changes of cytochrome P-450: effect of dimyristoyl lecithin. Proc. natn. Acad. Sci. U.S.A. 75, 59555959.Google Scholar
Van Dijck, P. W. M., De Kruijff, B., Van Deenen, L. L. M., De Gier, J. & Demel, R. A., (1976). The preference of cholesterol for phosphatidylcholine in mixed phosphatidylcholine-phosphatidylethanolamine bilayers. Biochim. biophys. Acta 455, 576587.Google Scholar
Van Dijck, P. W. M., De Kruijff, B., Verkleij, A. J., Van Deenen, L L. M. & De Gier, J. (1978). Comparative studies on the effects of pH and Ca2+ on bilayers of various negatively charged phospholipids and their mixtures with phosphatidylcholine. Biochim biophys. Acta 512, 8496.Google Scholar
Vaughan, D. J. & Keough, K. M. (1974). Changes in phase transitions of phosphatidylethanolamine – and phosphatidylcholine-water dispersions induced by small modifications in the headgroup and backbone regions. FEBS Lett. 47, 158161.Google Scholar
Vaz, N. A. P. & Doane, J. W. (1980). NMR measurements of chain ordering in some liquid-crystalline lamellar phases. Phys. Rev. A (in the press, 1980).Google Scholar
Vaz, N. A. P., Doane, J. W. & Neubert, M. E. (1979). Polymorphism in a lamellar liquid-crystal bilayer system. Phys. Rev. Lett. 42, 14061409.Google Scholar
Vik, S. B. & Capaldi, R. A. (1977). Lipid requirements for cytochrome c oxidase activity. Biochemistry, N. Y. 16, 57555759.Google Scholar
Warren, G. B., Houslay, M. D., Metcalfe, J. C. & Birdsall, N. J. M. (1975). Cholesterol is excluded from the phospholipid annulus surrounding an active calcium transport protein. Nature, Lond. 255, 684687.Google Scholar
Weiss, R. L., Goodenough, D. A. & Goodenough, U. W. (1977). Membrane differentiations at sites specialized for cell fusion. J. Cell. Biol. 72, 144160.Google Scholar
Wennerström, H. (1979). The relation between micelle size and shape and the stability of liquid crystalline phases in surfactant systems. J. Colloid & Interface Sci. 68, 589590.Google Scholar
Wennerström, H. & Lindman, B.Micelles. Physical chemistry of surfactant association. Physics Reports 52, 186.Google Scholar
Wieslander, A., Christiansson, A., Rilfors, L. & Lindblom, G. (1980). Lipid bilayer stability in membranes. Regulation of lipid composition in Acholeplasma laidlawii as governed by molecular shape. Biochemistry, (in the press).Google Scholar
Wu, S. H.-W. & McConnell, H. M. (1975). Phase separations in phospholipid membranes. Biochemistry, N. Y. 14, 847854.Google Scholar
Zakai, N., Kulka, R. G. & Loyter, A. (1977). Membrane ultrastructural changes during calcium phosphate-induced fusion of human erythrocyte ghosts. Proc. natn. Acad. Sci. U.S.A. 74, 24172421.Google Scholar