Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T19:43:26.708Z Has data issue: false hasContentIssue false

New epitaxy paradigm in epitaxial self-assembled oxide vertically aligned nanocomposite thin films

Published online by Cambridge University Press:  24 July 2017

Jijie Huang
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
Judith L. MacManus-Driscoll
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 OFS, U.K.
Haiyan Wang*
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA; and School of Electrical and Computer Engineering, West Lafayette, Indiana 47907, USA
*
a) Address all correspondence to this author. e-mail: hwang00@purdue.edu
Get access

Abstract

Self-assembled oxide-based vertically aligned nanocomposite (VAN) thin films have aroused tremendous research interest in the past decade. The interest arises from the range of unique nanostructured films which can form and the multifunctionality arising from these forms. Hence, a large number of oxide VAN systems have been demonstrated and explored for enhancing specific physical properties, such as strain-enhanced ferroelectricity, tunable magnetotransport, and novel electrical/ionic transport properties. The epitaxial growth of the nanocomposite thin films and the coupling at the heterogeneous interfaces are critical considerations for future device applications. In this review, the advantages of strain coupling along vertical interfaces and film-substrate interfaces in nanocomposite films over conventional single phase films are discussed. Specifically, a unique strain compensation model enabling the epitaxial growth of two-phase nanocomposites having large lattice mismatch with substrates is proposed. Out-of-plane strain coupling between the two phases is also discussed in terms of designing strain states for desired functionalities.

Type
Invited Reviews
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Mmantsae Diale

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

REFERENCES

Wu, S., Cybart, S.A., Yu, P., Rossell, M., Zhang, J., Ramesh, R., and Dynes, R.: Reversible electric control of exchange bias in a multiferroic field-effect device. Nat. Mater. 9, 756 (2010).CrossRefGoogle Scholar
Zhang, W., Ramesh, R., MacManus-Driscoll, J.L., and Wang, H.: Multifunctional, self-assembled oxide nanocomposite thin films and devices. MRS Bull. 40, 736 (2015).Google Scholar
Hwang, H.Y., Iwasa, Y., Kawasaki, M., Keimer, B., Nagaosa, N., and Tokura, Y.: Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103 (2012).Google Scholar
Zheng, H., Wang, J., Lofland, S.E., Ma, Z., Mohaddes-Ardabili, L., Zhao, T., Salamanca-Riba, L., Shinde, S.R., Ogale, S.B., Bai, F., Viehland, D., Jia, Y., Schlom, D.G., Wuttig, M., Roytburd, A., and Ramesh, R.: Multiferroic BaTiO3–CoFe2O4 nanostructures. Science 303(5658), 661 (2004).CrossRefGoogle ScholarPubMed
Eerenstein, W., Mathur, N.D., and Scott, J.F.: Multiferroic and magnetoelectric materials. Nature 442, 759 (2006).Google Scholar
Cheong, S-W. and Mostovoy, M.: Multiferroics: A magnetic twist for ferroelectricity. Nat. Mater. 6, 13 (2007).Google Scholar
Huang, J., Tsai, C., Chen, L., Jian, J., Yu, K., Zhang, W., and Wang, H.: Enhanced flux pinning properties in YBa2Cu3O7δ/(CoFe2O4)0.3(CeO2)0.7 multilayer thin films. IEEE Trans. Appl. Supercond. 25(3), 7500404 (2015).Google Scholar
Choi, K.J., Biegalski, M., Li, Y.L., Sharan, A., Schubert, J., Uecker, R., Reiche, P., Chen, Y.B., Pan, X.Q., Gopalan, V., Chen, L-Q., Schlom, D.G., and Eom, C.B.: Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005 (2004).Google Scholar
Huang, J., Chen, L., Jian, J., Khatkhatay, F., and Wang, H.: Nanostructured pinning centers in FeSe0.1Te0.9 thin films for enhanced superconducting properties. Supercond. Sci. Technol. 27, 105006 (2014).Google Scholar
Haeni, J.H., Irvin, P., Chang, W., Uecker, R., Reiche, P., Li, Y.L., Choudhury, S., Tian, W., Hawley, M.E., Craigo, B., Tagantsev, A.K., Pan, X.Q., Streiffer, S.K., Chen, L.Q., Kirchoefer, S.W., Levy, J., and Schlom, D.G.: Room-temperature ferroelectricity in strained SrTiO3 . Nature 430, 758 (2004).Google Scholar
Ni, Y., Rao, W., and Khachaturyan, A.G.: Pseudospinodal mode of decomposition in films and formation of chessboard-like nanostructure. Nano Lett. 9, 3275 (2009).Google Scholar
MacManus-Driscoll, J.L., Suwardi, A., and Wang, H.: Composite epitaxial thin films: A new platform for tuning, probing, and exploiting mesoscale oxides. MRS Bull. 40, 933 (2015).CrossRefGoogle Scholar
MacManus-Driscoll, J.L., Zerrer, P., Wang, H., Yang, H., Yoon, J., Fouchet, A., Yu, R., Blamire, M.G., and Jia, Q.: Strain control and spontaneous phase ordering in vertical nanocomposite heteroepitaxial thin films. Nat. Mater. 7, 314 (2008).Google Scholar
Moshnyaga, V., Damaschke, B., Shapoval, O., Belenchuk, A., Faupel, J., Lebedev, O.I., Verbeeck, J., Van Tendeloo, G., Mücksch, M., Tsurkan, V., Tidecks, R., and Samwer, K.: Structural phase transition and stress accommodation in (La0.7Ca0.3MnO3)1−x :(MgO) x composite films. Phys. Rev. B: Condens. Matter Mater. Phys. 66, 104421 (2002).Google Scholar
Tsai, C., Huang, J., Lee, J., Khatkhatay, F., Chen, L., Chen, A., Su, Q., and Wang, H.: Tunable flux pinning landscapes achieved by functional ferromagnetic Fe2O3:CeO2 vertically aligned nanocomposites in YBa2Cu3O7−δ thin films. Physica C 510, 13 (2015).Google Scholar
Chen, A., Bi, Z., Jia, Q., MacManus-Driscoll, J.L., and Wang, H.: Microstructure, vertical strain control and tunable functionalities in self-assembled, vertically aligned nanocomposite thin films. Acta Mater. 61, 2783 (2013).Google Scholar
Zhang, W., Chen, A., Bi, Z., Jia, Q., MacManus-Driscoll, J.L., and Wang, H.: Interfacial coupling in heteroepitaxial vertically aligned nanocomposite thin films: From lateral to vertical control. Curr. Opin. Solid State Mater. Sci. 18, 6 (2014).Google Scholar
Huang, J., Chen, L., Jian, J., Tyler, K., Li, L., Wang, H., and Wang, H.: Magnetic (CoFe2O4)0.1(CeO2)0.9 nanocomposite as effective pinning centers in FeSe0.1Te0.9 thin films. J. Phys.: Condens. Matter 28, 025702 (2016).Google ScholarPubMed
MacManus-Driscoll, J.L.: Self-assembled heteroepitaxial oxide nanocomposite thin film structures: Designing interface-induced functionality in electronic materials. Adv. Funct. Mater. 20, 2035 (2010).Google Scholar
Levin, I., Li, J., Slutsker, J., and Roytburd, A.L.: Design of self-assembled multiferroic nanostructures in epitaxial films. Adv. Mater. 18(15), 2044 (2006).CrossRefGoogle Scholar
Kim, D.H., Aimon, N.M., Sun, X., and Ross, C.A.: Integration of self-assembled epitaxial BiFeO3–CoFe2O4 multiferroic nanocomposites on silicon substrates. Adv. Funct. Mater. 24(16), 2334 (2014).CrossRefGoogle Scholar
Zhu, Y., Liu, P., Yu, R., Hsieh, Y., Ke, D., Chu, Y., and Zhan, Q.: Orientation-tuning in self-assembled heterostructures induced by a buffer layer. Nanoscale 6, 5126 (2014).Google Scholar
Chen, A., Weigand, M., Bi, Z., Zhang, W., Lu, X., Dowden, P., MacManus-Driscoll, J.L., Wang, H., and Jia, Q.: Evolution of microstructure, strain and physical properties in oxide nanocomposite films. Sci. Rep. 4, 5426 (2014).CrossRefGoogle ScholarPubMed
Chen, A., Bi, Z., Tsai, C., Lee, J., Su, Q., Zhang, X., Jia, Q., MacManus-Driscoll, J.L., and Wang, H.: Tunable low-field magnetoresistance in (La0.7Sr0.3MnO3)0.5:(ZnO)0.5 self-assembled vertically aligned nanocomposite thin films. Adv. Funct. Mater. 21, 2423 (2011).CrossRefGoogle Scholar
Zhang, W., Li, L., Lu, P., Fan, M., Su, Q., Khatkhatay, F., Chen, A., Jia, Q., Zhang, X., MacManus-Driscoll, J.L., and Wang, H.: Integration of self-assembled vertically aligned nanocomposite (La0.7Sr0.3MnO3)1−x :(ZnO) x thin films on silicon substrates. ACS Appl. Mater. Interfaces 7, 21646 (2015).CrossRefGoogle Scholar
Kang, B.S., Wang, H., MacManus-Driscoll, J.L., Li, Y., Jia, Q., Mihut, I., and Betts, J.B.: Low field magnetotransport properties of (La0.7Sr0.3MnO3)0.5:(ZnO)0.5 nanocomposite films. Appl. Phys. Lett. 88, 192514 (2006).Google Scholar
Lloyd-Hughes, J., Mosley, C.D.W., Jones, S.P.P., Lees, M.R., Chen, A., Jia, Q.X., Choi, E-M., and MacManus-Driscoll, J.L.: Colossal terahertz magnetoresistance at room temperature in epitaxial La0.7Sr0.3MnO3 nanocomposites and single-phase thin films. Nano Lett. 17, 2506 (2017).Google Scholar
Su, Q., Yoon, D., Chen, A., Khatkhatay, F., Manthiram, A., and Wang, H.: Vertically aligned nanocomposite electrolytes with superior out-of-plane ionic conductivity for solid oxide fuel cells. J. Power Sources 242, 455 (2013).Google Scholar
Yoon, J., Cho, S., Kim, J.H., Lee, J.H., Bi, Z., Serquis, A., Zhang, X., Manthiram, A., and Wang, H.: Vertically aligned nanocomposite thin films as a cathode-electrolyte interface layer for thin film solid oxide fuel cells. Adv. Funct. Mater. 19, 3868 (2009).CrossRefGoogle Scholar
Lee, S., Zhang, W., Khatkhatay, F., Jia, Q., Wang, H., and MacManus-Driscoll, J.L.: Strain tuning and strong enhancement of ionic conductivity in SrZrO3–RE2O3 (RE = Sm, Eu, Gd, Dy, and Er) nanocomposite films. Adv. Funct. Mater. 25(27), 4328 (2015).CrossRefGoogle Scholar
Lee, S. and MacManus-Driscoll, J.L.: Fast and tunable nanoionics in vertically aligned nanostructured films. APL Mater. 5, 042304 (2017).Google Scholar
Zhang, W., Chen, A., Jian, J., Zhu, Y., Chen, L., Lu, P., Jia, Q., MacManus-Driscoll, J.L., Zhang, X., and Wang, H.: Strong perpendicular exchange bias in epitaxial La0.7Sr0.3MnO3:BiFeO3 nanocomposite films through vertical interfacial coupling. Nanoscale 7, 13808 (2015).Google Scholar
Fan, M., Zhang, W., Jian, J., Huang, J., and Wang, H.: Strong perpendicular exchange bias in epitaxial La0.7Sr0.3MnO3:LaFeO3 nanocomposite thin films. APL Mater. 4, 076105 (2016).Google Scholar
Weal, E., Patnaik, S., Bi, Z., Wang, H., Fix, T., Kursumovic, A., and MacManus-Driscoll, J.L.: Coexistence of strong ferromagnetism and polar switching at room temperature in Fe3O4–BiFeO3 nanocomposite thin films. Appl. Phys. Lett. 97, 153121 (2010).Google Scholar
Choi, E., Weal, E., Bi, Z., Wang, H., Kursumovic, A., Fix, T., Blamire, M.G., and MacManus-Driscoll, J.L.: Strong room temperature exchange bias in self-assembled BiFeO3–Fe3O4 nanocomposite heteroepitaxial films. Appl. Phys. Lett. 102, 012905 (2013).Google Scholar
Hsieh, Y., Strelcov, E., Liou, J., Shen, C., Chen, Y., Kalinin, S.V., and Chu, Y.: Electrical modulation of the local conduction at oxide tubular interfaces. ACS Nano 7(10), 8627 (2013).Google Scholar
Hsieh, Y., Liou, J., Huang, B., Liang, C., He, Q., Zhan, Q., Chiu, Y., Chen, Y., and Chu, Y.: Local conduction at the BiFeO3–CoFe2O4 tubular oxide interface. Adv. Mater. 24, 4564 (2012).Google Scholar
Yamada, H., Ogawa, Y., Ishii, Y., Sato, H., Kawasaki, M., Akoh, H., and Tokura, Y.: Engineered interface of magnetic oxides. Science 305, 646 (2004).CrossRefGoogle ScholarPubMed
Bousquet, E., Dawber, M., Stucki, N., Lichtensteiger, C., Hermet, P., Gariglio, S., Triscone, J.M., and Ghosez, P.: Improper ferroelectricity in perovskite oxide artificial superlattices. Nature 452, 732 (2008).Google Scholar
Mannhart, J. and Schlom, D.G.: Oxide interfaces-an opportunity for electronics. Science 327, 1607 (2010).CrossRefGoogle ScholarPubMed
Imada, M., Fujimori, A., and Tokura, Y.: Metal-insulator transitions. Rev. Mod. Phys. 70, 1039 (1998).Google Scholar
Zheng, H.M., Straub, F., Zhan, Q., Yang, P.L., Hsieh, W.K., Zavaliche, F., Chu, Y.H., Dahmen, U., and Ramesh, R.: Self-assembled growth of BiFeO3–CoFe2O4 nanostructures. Adv. Mater. 18, 2747 (2006).Google Scholar
Goyal, A., Kang, S., Leonard, K.J., Martin, P.M., Gapud, A.A., Varela, M., Paranthaman, M., Ijaduola, A.O., Specht, E.D., Thompson, J.R., Christen, D.K., Pennycook, S.J., and List, F.A.: Irradiation-free, columnar defects comprised of self-assembled nanodots and nanorods resulting in strongly enhanced flux-pinning in YBa2Cu3O7−δ films. Supercond. Sci. Technol. 18, 1533 (2005).Google Scholar
Park, S., Horibe, Y., Asada, T., Wielunski, L.S., Lee, N., Bonanno, P.L., O’Malley, S.M., Sirenko, A.A., Kazimirov, A., Tanimura, M., Gustafsson, T., and Cheong, S.W.: Highly aligned epitaxial nanorods with a checkerboard pattern in oxide films. Nano Lett. 8, 720 (2008).Google Scholar
Mukherjee, A., Cole, W.S., Woodward, P., Randeria, M., and Trivedi, N.: Theory of strain-controlled magnetotransport and stabilization of the ferromagnetic insulating phase in manganite thin films. Phys. Rev. Lett. 110, 157201 (2013).Google Scholar
Zhang, W., Fan, M., Li, L., Chen, A., Su, Q., Jia, Q., MacManus-Driscoll, J.L., and Wang, H.: Heterointerface design and strain tuning in epitaxial BiFeO3:CoFe2O4 nanocomposite films. Appl. Phys. Lett. 107, 212901 (2015).Google Scholar
Zavaliche, F., Zhao, T., Zheng, H., Straub, F., Cruz, M.P., Yang, P-L., Hao, D., and Ramesh, R.: Electrically assisted magnetic recording in multiferroic nanostructures. Nano Lett. 7(6), 1586 (2007).Google Scholar
Liu, H., Chen, L., He, Q., Liang, C., Chen, Y., Chien, Y., Hsieh, Y., Lin, S., Arenholz, E., Luo, C., Chueh, Y., Chen, Y., and Chu, Y.: Epitaxial photostriction–magnetostriction coupled self-assembled nanostructures. ACS Nano 6(8), 6952 (2012).Google Scholar
Fan, M., Zhang, W., Khatkhatay, F., Li, L., and Wang, H.: Enhanced tunable magnetoresistance properties over a wide temperature range in epitaxial (La0.7Sr0.3MnO3)1−x :(CeO2) x nanocomposites. J. Appl. Phys. 118, 065302 (2015).Google Scholar
Fix, T., Choi, E., Robinson, J.W.A., Lee, S., Chen, A., Prasad, B., Wang, H., Blamire, M.G., and MacManus-Driscoll, J.L.: Electric-Field control of ferromagnetism in a nanocomposite via a ZnO phase. Nano Lett. 13, 5886 (2013).Google Scholar
Yu, P., Lee, J.S., Okamoto, S., Rossell, M.D., Huijben, M., Yang, C.H., He, Q., Zhang, J.X., Yang, S.Y., Lee, M.J., Ramasse, Q.M., Erni, R., Chu, Y.H., Arena, D.A., Kao, C.C., Martin, L.W., and Ramesh, R.: Interface ferromagnetism and orbital reconstruction in BiFeO3–La0.7Sr0.3MnO3 heterostructures. Phys. Rev. Lett. 105, 027201 (2010).Google Scholar
Ohtomo, A. and Hwang, H.Y.: A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423 (2004).Google Scholar
Yang, S.M., Lee, S.B., Jian, J., Zhang, W., Jia, Q.X., Wang, H., Noh, T.W., Kalinin, S.V., and MacManus-Driscoll, J.L.: Strongly enhanced oxygen ion transport through samarium-doped CeO2 nanopillars in nanocomposite films. Nat. Commun. 6, 8588 (2015).Google Scholar
Lee, S., Zhang, W., Khatkhatay, F., Wang, H., Jia, Q., and MacManus-Driscoll, J.L.: Ionic conductivity increased by two orders of magnitude in micrometer-thick vertical yttria-stabilized ZrO2 nanocomposite films. Nano Lett. 15, 7362 (2015).Google Scholar
Chen, A., Zhang, W., Jian, J., Wang, H., Tsai, C-F., Su, Q., Jia, Q., and MacManus-Driscoll, J.L.: Role of boundaries on low-field magnetotransport properties of La0.7Sr0.3MnO3-based nanocomposite thin films. J. Mater. Res. 28, 1707 (2013).Google Scholar
Lee, H.N., Christen, H.M., Chisholm, M.F., Rouleau, C.M., and Lowndes, D.H.: Strong polarization enhancement in asymmetric three-component ferroelectric superlattices. Nature 433, 395 (2005).Google Scholar
Jiang, J.C., Meletis, E.I., and Gnanasekar, K.I.: Self-organized, ordered array of coherent orthogonal column nanostructures in epitaxial La0.8Sr0.2MnO3 thin films. Appl. Phys. Lett. 80, 4831 (2002).Google Scholar
Jiang, J.C., Henry, L.L., Gnanasekar, K.I., Chen, C., and Meletis, E.I.: Self-assembly of highly epitaxial (La,Sr)MnO3 nanorods on (001) LaAlO3 . Nano Lett. 4, 741 (2004).Google Scholar
Huang, D.X., Chen, C.L., and Jacobson, A.J.: Single-crystal and nano-columnar growth of gadolinium-doped ceria thin films on oxide substrates studied using electron microscopy. Mater. Res. Soc. Symp. Proc. 795, U591 (2004).Google Scholar
Huang, D.X., Chen, C.L., Chen, L., and Jacobson, A.J.: Strain relaxation by directionally aligned precipitate nanoparticles in the growth of single-crystalline Gd-doped ceria thin films. Appl. Phys. Lett. 84, 708 (2004).Google Scholar
Aimon, N.M., Choi, H.K., Sun, X., Kim, D.H., and Ross, C.A.: Templated self-assembly of functional oxide nanocomposites. Adv. Mater. 26, 3063 (2014).Google Scholar
Wang, Z., Li, Y., Viswan, R., Hu, B., Harris, V.G., Li, J., and Viehland, D.: Engineered magnetic shape anisotropy in BiFeO3–CoFe2O4 self-assembled thin films. ACS Nano 7(4), 3447 (2013).Google Scholar
Imai, A., Cheng, X., Xin, H.L., Eliseev, E.A., Morozovska, A.N., Kalinin, S.V., Takahashi, R., Lippmaa, M., Matsumoto, Y., and Nagarajan, V.: Epitaxial Bi5Ti3FeO15–CoFe2O4 pillar-matrix multiferroic nanostructures. ACS Nano 7(12), 11079 (2013).Google Scholar
Zhao, R., Li, W., Lee, J., Choi, E., Liang, Y., Zhang, W., Tang, R., Wang, H., Jia, Q., MacManus-Driscoll, J.L., and Yang, H.: Precise tuning of (YBa2Cu3O7−δ)1−x :(BaZrO3) x thin film nanocomposite structures. Adv. Funct. Mater. 24, 5240 (2014).Google Scholar
Zhu, Y., Tsai, C., Wang, J., Kwon, J., Wang, H., Varanasi, C.V., Burke, J., Brunke, L., and Barnes, P.N.: Interfacial defects distribution and strain coupling in the vertically aligned nanocomposite YBa2Cu3O7−x /BaSnO3 thin films. J. Mater. Res. 27(13), 1763 (2012).Google Scholar
Aimon, N.M., Kim, D., Sun, X., and Ross, C.A.: Multiferroic behavior of templated BiFeO3–CoFe2O4 self-assembled nanocomposites. ACS Appl. Mater. Interfaces 7, 2263 (2015).Google Scholar
Comes, R., Liu, H., Khokhlov, M., Kasica, R., Lu, J., and Wolf, S.A.: Directed self-assembly of epitaxial CoFe2O4–BiFeO3 multiferroic nanocomposites. Nano Lett. 12, 2367 (2012).Google Scholar
Chen, A., Hu, J., Lu, P., Yang, T., Zhang, W., Li, L., Ahmed, T., Enriquez, E., Weigand, M., Su, Q., Wang, H., Zhu, J., MacManus-Driscoll, J.L., Chen, L., Yarotski, D., and Jia, Q.: Role of scaffold network in controlling strain and functionalities of nanocomposite films. Sci. Adv. 2, e1600245 (2016).Google Scholar
Khatkhatay, F., Chen, A., Lee, J., Zhang, W., Abdel-Raziq, H., and Wang, H.: Ferroelectric properties of vertically aligned nanostructured BaTiO3–CeO2 thin films and their integration on silicon. ACS Appl. Mater. Interfaces 5, 12541 (2013).Google Scholar
Huang, J., Li, L., Wang, X., Qi, Z., Sebastian, M.A.P., Haugan, T.J., and Wang, H.: Enhanced flux pinning properties of YBCO thin films with various pinning landscapes. IEEE Trans. Appl. Supercond. 27(4), 8000305 (2017).Google Scholar
Harrington, S.A., Zhai, J., Denev, S., Gopalan, V., Wang, H., Bi, Z., Redfern, S.A.T., Baek, S., Bark, C.W., Eom, C., Jia, Q., Vickers, M.E., and MacManus-Driscoll, J.L.: Thick lead-free ferroelectric films with high Curie temperatures through nanocomposite-induced strain. Nat. Nanotechnol. 6, 491 (2011).Google Scholar
Huang, J., Fan, M., Wang, H., Chen, L., Tsai, C., Li, L., and Wang, H.: Enhanced superconducting properties of YBa2Cu3O7−δ thin film with magnetic nanolayer additions. Ceram. Int. 42, 12202 (2016).Google Scholar
Bonilla, F.J., Novikova, A., Vidal, F., Zheng, Y., Fonda, E., Demaille, D., Schuler, V., Coati, A., Vlad, A., Garreau, Y., Simkin, M.S., Dumont, Y., Hidki, S., and Etgens, V.: Combinatorial growth and anisotropy control of self-assembled epitaxial ultrathin alloy nanowires. ACS Nano 7(5), 4022 (2013).CrossRefGoogle ScholarPubMed
Huang, J., Tsai, C., Chen, L., Jian, J., Khatkhatay, F., Yu, K., and Wang, H.: Magnetic properties of (CoFe2O4) x :(CeO2)1−x vertically aligned nanocomposites and their pinning properties in YBa2Cu3O7−δ thin films. J. Appl. Phys. 115, 123902 (2014).Google Scholar
Lee, O., Harrington, S.A., Kursumovic, A., Defay, E., Wang, H., Bi, Z., Tsai, C., Yan, L., Jia, Q., and MacManus-Driscoll, J.L.: Extremely high tunability and low loss in nanoscaffold ferroelectric films. Nano Lett. 12, 4311 (2012).CrossRefGoogle ScholarPubMed
Lee, S., Sangle, A., Lu, P., Chen, A., Zhang, W., Lee, J., Wang, H., Jia, Q., and MacManus-Driscoll, J.L.: Novel electroforming-free nanoscaffold memristor with very high uniformity, tunability, and density. Adv. Mater. 26, 6284 (2014).Google Scholar
Chen, A., Bi, Z., Hazariwala, H., Zhang, X., Su, Q., Chen, L., Jia, Q., MacManus-Driscoll, J.L., and Wang, H.: Microstructure, magnetic, and low-field magnetotransport properties of self-assembled (La0.7Sr0.3MnO3)0.5:(CeO2)0.5 vertically aligned nanocomposite thin films. Nanotechnology 22, 315712 (2011).Google Scholar
Chang, W., Liu, H., Tra, V.T., Chen, J., Wei, T., Tzeng, W.Y., Zhu, Y., Kuo, H., Hsieh, Y., Lin, J., Zhan, Q., Luo, C., Lin, J., He, J., Wu, C., and Chu, Y.: Tuning electronic transport in a self-assembled nanocomposite. ACS Nano 8(6), 6242 (2014).Google Scholar
Chen, A., Zhang, W., Khatkhatay, F., Su, Q., Tsai, C., Chen, L., Jia, Q.X., MacManus-Driscoll, J.L., and Wang, H.: Magnetotransport properties of quasi-one-dimensionally channeled vertically aligned heteroepitaxial nanomazes. Appl. Phys. Lett. 102, 093114 (2013).Google Scholar
Narayan, J. and Larson, B.C.: Domain epitaxy: A unified paradigm for thin film growth. J. Appl. Phys. 93, 278 (2003).Google Scholar
Rawdanowicz, T.A. and Narayan, J.: Epitaxial GaN on Si(111): Process control of SiN x interlayer formation. Appl. Phys. Lett. 85, 133 (2004).Google Scholar
Wang, H., Tiwari, A., Kvit, A., Zhang, X., and Narayan, J.: Epitaxial growth of TaN thin films on Si(100) and Si(111) using a TiN buffer layer. Appl. Phys. Lett. 80, 2323 (2002).Google Scholar
Bi, Z., Lee, J.H., Yang, H., Jia, Q., MacManus-Driscoll, J.L., and Wang, H.: Tunable lattice strain in vertically aligned nanocomposite (BiFeO3) x :(Sm2O3)1−x thin films. J. Appl. Phys. 106, 094309 (2009).Google Scholar
Cho, S., Yun, C., Tappernzhofen, S., Kursumovic, A., Lee, S., Lu, P., Jia, Q., Fan, M., Jian, J., Wang, H., Hofmann, S., and MacManus-Driscoll, J.L.: Self-assembled oxide films with tailored nanoscale ionic and electronic channels for controlled resistive switching. Nat. Commun. 7, 12373 (2016).Google Scholar