Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-27T05:12:15.085Z Has data issue: false hasContentIssue false

Nitrogen-doped carbon “spider webs” derived from pyrolysis of polyaniline nanofibers in ammonia for capacitive energy storage

Published online by Cambridge University Press:  07 December 2017

Yu Song*
Affiliation:
Department of Chemistry, Northeastern University, Shenyang 110819, People’s Republic of China
Zengming Qin
Affiliation:
Department of Chemistry, Northeastern University, Shenyang 110819, People’s Republic of China
Zihang Huang
Affiliation:
Department of Chemistry, Northeastern University, Shenyang 110819, People’s Republic of China
Tianyu Liu
Affiliation:
Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
Yat Li
Affiliation:
Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
Xiao-Xia Liu*
Affiliation:
Department of Chemistry, Northeastern University, Shenyang 110819, People’s Republic of China
*
a)Address all correspondence to these authors. e-mail: songyua@foxmail.com
Get access

Abstract

Heteroatom-doped carbon materials have attracted immense interest as advanced supercapacitor electrode materials due to their unique properties. A carbon cloth-supported, nitrogen-doped carbon “spider web” network full of macropores and mesopores is developed via the pyrolysis of polyaniline nanofibers in ammonia atmosphere. The presence of mesopores and macropores can provide ion-buffering reservoirs to shorten the ion diffusion distance to the interior part of the carbon network. Carbonization in ammonia introduced N heteroatoms through gas phase chemical reactions between ammonia and the oxygen functionalities on the carbon surface. The enhanced ion-accessible surface area and improved charge transfer rate can be achieved. The N-doped carbon “spider web” exhibited a high specific capacitance of 266 F/g at a scan rate of 2 mV/s. Even when the scan rate was increased to 500 mV/s, 61% of its capacitance could still be retained, evidencing its excellent rate performance. The demonstrated strategy is anticipated to be generally effective for preparing heteroatom-doped carbon electrodes with other polymers.

Type
Invited Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

c)

These authors contributed equally to this work.

d)

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Contributing Editor: Marcus A. Worsley

References

REFERENCES

Augustyn, V., Simon, P., and Dunn, B.: Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597 (2014).CrossRefGoogle Scholar
Chen, L.F., Zhang, X.D., Liang, H.W., Kong, M., Guan, Q.F., Chen, P., Wu, Z.Y., and Yu, S.H.: Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 6, 7092 (2012).CrossRefGoogle ScholarPubMed
Dutta, S., Bhaumik, A., and Wu, K.C.W.: Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications. Energy Environ. Sci. 7, 3574 (2014).CrossRefGoogle Scholar
Feng, D-Y., Song, Y., Huang, Z-H., Xu, X-X., and Liu, X-X.: Rate capability improvement of polypyrrole via integration with functionalized commercial carbon cloth for pseudocapacitor. J. Power Sources 324, 788 (2016).CrossRefGoogle Scholar
Liu, T., Zhang, F., Song, Y., and Li, Y.: Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J. Mater. Chem. A 5, 17705 (2017).CrossRefGoogle Scholar
Zhai, T., Lu, X., Wang, H., Wang, G., Mathis, T., Liu, T., Li, C., Tong, Y., and Li, Y.: An electrochemical capacitor with applicable energy density of 7.4 W h/kg at average power density of 3000 W/kg. Nano Lett. 15, 3189 (2015).CrossRefGoogle Scholar
Yu, M., Lin, D., Feng, H., Zeng, Y., Tong, Y., and Lu, X.: Boosting the energy density of carbon-based aqueous supercapacitors by optimizing the surface charge. Angew. Chem., Int. Ed. 56, 5454 (2017).CrossRefGoogle ScholarPubMed
Yu, M., Zhao, S., Feng, H., Hu, L., Zhang, X., Zeng, Y., Tong, Y., and Lu, X.: Engineering thin MoS2 nanosheets on TiN nanorods: Advanced electrochemical capacitor electrode and hydrogen evolution electrocatalyst. ACS Energy Lett. 2, 1862 (2017).CrossRefGoogle Scholar
Zeng, Y., Yu, M., Meng, Y., Fang, P., Lu, X., and Tong, Y.: Iron-based supercapacitor electrodes: Advances and challenges. Adv. Energy Mater. 6, 1601053 (2016).CrossRefGoogle Scholar
Lu, X., Liu, T., Zhai, T., Wang, G., Yu, M., Xie, S., Ling, Y., Liang, C., Tong, Y., and Li, Y.: Improving the cycling stability of metal-nitride supercapacitor electrodes with a thin carbon shell. Adv. Energy Mater. 4, 1300994 (2014).CrossRefGoogle Scholar
Lu, X., Yu, M., Wang, G., Zhai, T., Xie, S., Ling, Y., Tong, Y., and Li, Y.: H–TiO2@MnO2//H–TiO2@C core–shell nanowires for high performance and flexible asymmetric supercapacitors. Adv. Mater. 25, 267 (2013).CrossRefGoogle Scholar
Song, Y., Liu, T., Yao, B., Li, M., Kou, T., Huang, Z-H., Feng, D-Y., Wang, F., Tong, Y., Liu, X-X., and Li, Y.: Ostwald ripening improves rate capability of high mass loading manganese oxide for supercapacitors. ACS Energy Lett. 2, 1752 (2017).CrossRefGoogle Scholar
Song, Y., Liu, T.Y., Yao, B., Kou, T.Y., Feng, D.Y., Liu, X.X., and Li, Y.: Amorphous mixed-valence vanadium oxide/exfoliated carbon cloth structure shows a record high cycling stability. Small 13, 1700067 (2017).CrossRefGoogle Scholar
Zhai, T., Wan, L., Sun, S., Chen, Q., Sun, J., Xia, Q., and Xia, H.: Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv. Mater. 29, 1604167 (2017).CrossRefGoogle Scholar
Yao, B., Huang, L., Zhang, J., Gao, X., Wu, J., Cheng, Y., Xiao, X., Wang, B., Li, Y., and Zhou, J.: Flexible transparent molybdenum trioxide nanopaper for energy storage. Adv. Mater. 28, 6353 (2016).CrossRefGoogle ScholarPubMed
Zhang, F., Liu, T., Li, M., Yu, M., Luo, Y., Tong, Y., and Li, Y.: Multiscale pore network boosts capacitance of carbon electrodes for ultrafast charging. Nano Lett. 17, 3097 (2017).CrossRefGoogle ScholarPubMed
Song, Y., Liu, T., Qian, F., Zhu, C., Yao, B., Duoss, E., Spadaccini, C., Worsley, M., and Li, Y.: Three-dimensional carbon architectures for electrochemical capacitors. J. Colloid Interface Sci., 509, 529 (2017).CrossRefGoogle ScholarPubMed
Yao, B., Zhang, J., Kou, T., Song, Y., Liu, T., and Li, Y.: Paper-based electrodes for flexible energy storage devices. Adv. Sci. 4, 1700107 (2017).CrossRefGoogle ScholarPubMed
Wang, D.W., Li, F., Liu, M., Lu, G.Q., and Cheng, H.M.: 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem., Int. Ed. 47, 373 (2008).CrossRefGoogle ScholarPubMed
Zhang, W., Lin, H., Lin, Z., Yin, J., Lu, H., Liu, D., and Zhao, M.: 3D hierarchical porous carbon for supercapacitors prepared from lignin through a facile template-free method. ChemSusChem 8, 2114 (2015).CrossRefGoogle ScholarPubMed
Zhang, F., Liu, T., Hou, G., Kou, T., Yue, L., Guan, R., and Li, Y.: Hierarchically porous carbon foams for electric double layer capacitors. Nano Res. 9, 2875 (2016).CrossRefGoogle Scholar
Yuan, D-s., Zhou, T-x., Zhou, S-l., Zou, W-j., Mo, S-s., and Xia, N-n.: Nitrogen-enriched carbon nanowires from the direct carbonization of polyaniline nanowires and its electrochemical properties. Electrochem. Commun. 13, 242 (2011).CrossRefGoogle Scholar
Chaudhari, S., Kwon, S.Y., and Yu, J-S.: Ordered multimodal porous carbon with hierarchical nanostructure as high performance electrode material for supercapacitors. RSC Adv. 4, 38931 (2014).CrossRefGoogle Scholar
Wang, Q., Yan, J., Wang, Y., Wei, T., Zhang, M., Jing, X., and Fan, Z.: Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors. Carbon 67, 119 (2014).CrossRefGoogle Scholar
Zhu, S., Li, J., He, C., Zhao, N., Liu, E., Shi, C., and Zhang, M.: Soluble salt self-assembly-assisted synthesis of three-dimensional hierarchical porous carbon networks for supercapacitors. J. Mater. Chem. A 3, 22266 (2015).CrossRefGoogle Scholar
Ewert, J.K., Weingarth, D., Denner, C., Friedrich, M., Zeiger, M., Schreiber, A., Jäckel, N., Presser, V., and Kempe, R.: Enhanced capacitance of nitrogen-doped hierarchically porous carbide-derived carbon in matched ionic liquids. J. Mater. Chem. A 3, 18906 (2015).CrossRefGoogle Scholar
Han, J., Xu, G., Ding, B., Pan, J., Dou, H., and MacFarlane, D.R.: Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors. J. Mater. Chem. A 2, 5352 (2014).CrossRefGoogle Scholar
Hou, J., Cao, C., Idrees, F., and Ma, X.: Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9, 2556 (2015).CrossRefGoogle ScholarPubMed
Lai, L., Potts, J.R., Zhan, D., Wang, L., Poh, C.K., Tang, C., Gong, H., Shen, Z., Lin, J., and Ruoff, R.S.: Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 5, 7936 (2012).CrossRefGoogle Scholar
Qie, L., Chen, W., Xu, H., Xiong, X., Jiang, Y., Zou, F., Hu, X., Xin, Y., Zhang, Z., and Huang, Y.: Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ. Sci. 6, 2497 (2013).CrossRefGoogle Scholar
Luo, W., Wang, B., Heron, C.G., Allen, M.J., Morre, J., Maier, C.S., Stickle, W.F., and Ji, X.: Pyrolysis of cellulose under ammonia leads to nitrogen-doped nanoporous carbon generated through methane formation. Nano Lett. 14, 2225 (2014).CrossRefGoogle ScholarPubMed
Wang, G., Wang, H., Lu, X., Ling, Y., Yu, M., Zhai, T., Tong, Y., and Li, Y.: Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv. Mater. 26, 2676 (2014).CrossRefGoogle ScholarPubMed
Zhang, Q.e., Zhou, A., Wang, J., Wu, J., and Bai, H.: Degradation-induced capacitance: A new insight into the superior capacitive performance of polyaniline/graphene composites. Energy Environ. Sci., 10, 2372 (2017).CrossRefGoogle Scholar
Luo, Y., Kong, D., Jia, Y., Luo, J., Lu, Y., Zhang, D., Qiu, K., Li, C.M., and Yu, T.: Self-assembled graphene@PANI nanoworm composites with enhanced supercapacitor performance. RSC Adv. 3, 5851 (2013).CrossRefGoogle Scholar
Wang, L., Yao, Q., Bi, H., Huang, F., Wang, Q., and Chen, L.: PANI/graphene nanocomposite films with high thermoelectric properties by enhanced molecular ordering. J. Mater. Chem. A 3, 7086 (2015).CrossRefGoogle Scholar
Huang, Z.H., Liu, T.Y., Song, Y., Li, Y., and Liu, X.X.: Balancing the electrical double layer capacitance and pseudocapacitance of hetero-atom doped carbon. Nanoscale, 9, 13119 (2017).CrossRefGoogle ScholarPubMed
Hulicova-Jurcakova, D., Kodama, M., Shiraishi, S., Hatori, H., Zhu, Z.H., and Lu, G.Q.: Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance. Adv. Funct. Mater. 19, 1800 (2009).CrossRefGoogle Scholar
Yang, M., Zhong, Y., Bao, J., Zhou, X., Wei, J., and Zhou, Z.: Achieving battery-level energy density by constructing aqueous carbonaceous supercapacitors with hierarchical porous N-rich carbon materials. J. Mater. Chem. A 3, 11387 (2015).CrossRefGoogle Scholar
Li, Z., Xu, Z., Wang, H., Ding, J., Zahiri, B., Holt, C.M.B., Tan, X., and Mitlin, D.: Colossal pseudocapacitance in a high functionality–high surface area carbon anode doubles the energy of an asymmetric supercapacitor. Energy Environ. Sci. 7, 1708 (2014).CrossRefGoogle Scholar
Song, Y., Liu, T-Y., Xu, G-L., Feng, D-Y., Yao, B., Kou, T-Y., Liu, X-X., and Li, Y.: Tri-layered graphite foil for electrochemical capacitors. J. Mater. Chem. A 4, 7683 (2016).CrossRefGoogle Scholar
Li, L., Liu, E., Li, J., Yang, Y., Shen, H., Huang, Z., Xiang, X., and Li, W.: A doped activated carbon prepared from polyaniline for high performance supercapacitors. J. Power Sources 195, 1516 (2010).CrossRefGoogle Scholar
Song, Y., Xu, J-L., and Liu, X-X.: Electrochemical anchoring of dual doping polypyrrole on graphene sheets partially exfoliated from graphite foil for high-performance supercapacitor electrode. J. Power Sources 249, 48 (2014).CrossRefGoogle Scholar
Li, Z., Zhang, L., Amirkhiz, B.S., Tan, X., Xu, Z., Wang, H., Olsen, B.C., Holt, C.M.B., and Mitlin, D.: Carbonized chicken eggshell membranes with 3D architectures as high-performance electrode materials for supercapacitors. Adv. Energy Mater. 2, 431 (2012).CrossRefGoogle Scholar